JEE-MAIN-2021 (17th March-First Shift)-PCM-2

PART - A (PHYSICS)
 SECTION - A

(One Options Correct Type)
Questions: 1:- A current of 10 A exists in a wire of cross-sectional area of $5 \mathrm{~mm}^{2}$ with a drift velocity of $2 \times 10^{-3} \mathrm{~ms}^{-1}$. The number of free electrons in each cubic meter of the wire \qquad
(A) 2×10^{25}
(B) 1×10^{23}
(C) 2×10^{6}
(D) 625×10^{25}

Ans:- D

$$
\mathrm{i}=\mathrm{ne} \mathrm{AV} \mathrm{~V}_{\mathrm{o}}
$$

$$
\Rightarrow \mathrm{n}=\frac{\mathrm{i}}{\mathrm{eAV} V_{0}}=\frac{10}{1.6 \times 10^{-19} \times 5 \times 10^{-6} \times 2 \times 10^{-3}}=625 \times 10^{25}
$$

Questions: 2:- An electron of mass m and a photon have same energy E. The ratio of wavelength of electron to that of photon is: (c being the velocity of light)
(A) $\frac{1}{c}\left(\frac{E}{2 m}\right)^{1 / 2}$
(B) $\left(\frac{E}{2 m}\right)^{1 / 2}$
(C) $c(2 m E)^{1 / 2}$
(D) $\frac{1}{c}\left(\frac{2 m}{E}\right)^{1 / 2}$

Ans:- A
$\lambda_{\mathrm{e}}=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$ and $\lambda_{\mathrm{p}}=\frac{\mathrm{hc}}{\mathrm{E}}$
$\Rightarrow \frac{\lambda_{\mathrm{e}}^{2}}{\lambda_{\mathrm{e}}^{2}}=\frac{\frac{h^{2}}{2 E m}}{\frac{h^{2} c^{2}}{\mathrm{E}^{2}}}=\frac{\mathrm{E}}{2 m c^{2}} \Rightarrow \frac{\lambda_{\mathrm{e}}}{\lambda_{\mathrm{p}}}=\frac{1}{c}\left(\frac{\mathrm{E}}{2 \mathrm{~m}}\right)^{\frac{1}{2}}$

Questions: 3:- The thickness at the centre of a plano-convex lens is 3 mm and the diameter is 6 cm . If the speed of light in the material of the lens is $2 \times 10^{8} \mathrm{~ms}^{-1}$. The focal length of the lens is \qquad
(A) 15 cm
(B) 0.30 cm
(C) 30 cm
(D) 1.5 cm

Ans:- C

$$
\mu=\frac{c}{v_{m}}=\frac{3 \times 10^{8}}{2 \times 10^{8}}=1.5
$$

$$
\text { Here } \mathrm{MN}=3 \mathrm{~mm}=0.3 \mathrm{~cm}
$$

$$
\mathrm{AN}=\mathrm{BN}=6 \mathrm{~cm}
$$

With the help of right angled triangle ANO ,we can write
$(A O)^{2}=(A N)^{2}+(O N)^{2}$
$\Rightarrow R^{2}=(3)^{2}+(R-0.3)^{2}$
$\Rightarrow R^{2}=9+R^{2}+0.09-0.6 R$
$\Rightarrow 0.6 R=9.09 \Rightarrow R=\frac{9.09}{0.6}=15.15 \mathrm{~cm} \approx 15 \mathrm{~cm}$

With the help of Lens Maker's formula, we can write

$$
\frac{1}{f}=\left(\frac{\mu-\mu_{m}}{\mu_{m}}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\left(\frac{1.5-1}{1}\right)\left(\frac{1}{15}-\frac{1}{\infty}\right)=\frac{1}{30} \Rightarrow f=30 \mathrm{~cm}
$$

Questions: 4:- The vernier-scale used for measurement has a positive zero error of 0.2 mm . If while taking a measurement it was noted that ' 0 ' on the vernier- scale lies between 8.5 cm and 8.6 cm , Vernier coincidence is 6 , then the correct value of measurement is \qquad cm. (least count $=0.01$
cm)
(A) 8.36 cm
(B) 8.58 cm
(C) 8.54 cm
(D) 8.56 cm

Ans:- C
Positive zero error $=0.02 \mathrm{~cm}$
Reading $8.5+6 \times 0.01=8.56 \mathrm{~cm}$
Actual reading $=8.56-0.02=8.54 \mathrm{~cm}$
Questions: 5:- A triangular plate is shown. A force $\bar{F}=4 \hat{\imath}-3 \hat{\jmath}$ is applied at point P . The torque at point P with respect to point ' O ' and ' Q ' are:

(A) $15+20 \sqrt{3}, 15-20 \sqrt{3}$
(B) $-15-20 \sqrt{3}, 15-20 \sqrt{3}$
(C) $-15+20 \sqrt{3}, 15+20 \sqrt{3}$
(D) $15-20 \sqrt{3}, 15+20 \sqrt{3}$

Ans:- B
For Torque about point-O
$\vec{\Gamma}_{p O}=5 \hat{i}+5 \sqrt{3} \hat{j}$
$\vec{\tau}_{O}=\vec{p}_{P O} \times \vec{F}=(5 \hat{i}+5 \sqrt{3} \hat{j}) \times(4 \hat{i}-3 \hat{j})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 5 & 5 \sqrt{3} & 0 \\ 4 & -3 & 0\end{array}\right|=(-15-20 \sqrt{3}) \hat{k}$
For Torque about point-Q
$\vec{r}_{P Q}=-5 \hat{i}+5 \sqrt{3} \hat{j}$
$\vec{\tau}_{Q}=\vec{p}_{P Q} \times \overrightarrow{\mathrm{F}}=(-5 \hat{i}+5 \sqrt{3} \hat{j}) \times(4 \hat{i}-3 \hat{j})=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ -5 & 5 \sqrt{3} & 0 \\ 4 & -3 & 0\end{array}\right|=(+15-20 \sqrt{3}) \hat{k}$
Questions: 6:- A car accelerates from rest at a constant rate α for some time after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t seconds, the total distance traveled is:
(A) $\frac{4 \alpha \beta}{(\alpha+\beta)} t^{2}$
(B) $\frac{\alpha \beta}{4(\alpha+\beta)} t^{2}$
(C) $\frac{2 \alpha \beta}{(\alpha+\beta)} \mathrm{t}^{2}$
(D) $\frac{\alpha \beta}{2(\alpha+\beta)} t^{2}$

Ans:- D
$\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t}$

$$
\begin{aligned}
& \qquad \frac{v_{0}}{t_{1}}=\alpha, \text { and } \frac{v_{0}}{t_{2}}=\beta \\
& \Rightarrow \frac{v_{0}}{\alpha}+\frac{v_{0}}{\beta}=t_{1}+t_{2}=t \Rightarrow v_{0}=\frac{t}{\frac{1}{\alpha}+\frac{1}{\beta}}=\frac{\alpha \beta t}{\alpha+\beta} \\
& \text { Distance traveled }=\text { Area under speed -time } \\
& \text { graph }=\frac{1}{2} \times t \times \frac{\alpha \beta t}{\alpha+\beta}=\frac{\alpha \beta}{2(\alpha+\beta)} t^{2}
\end{aligned}
$$

Questions: 7:- A boy is rolling a 0.5 kg ball on the frictionless floor with the speed of $20 \mathrm{~ms}^{-1}$. The ball gets deflected by an obstacle on the way. After deflection it moves with 5% of its initial kinetic energy. What is the speed of the ball now?
(A) $14.41 \mathrm{~ms}^{-1}$
(B) $19.0 \mathrm{~ms}^{-1}$
(C) $1.00 \mathrm{~ms}^{-1}$
(D) $4.47 \mathrm{~ms}^{-1}$

Ans:- D
$\mathrm{K}_{\mathrm{I}}=\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{2}{5} m r^{2}\right)\left(\frac{v}{r}\right)^{2}=\frac{7}{10} m v^{2}=140 \mathrm{~J}$
$\mathrm{K}_{\mathrm{t}}=0.05 \mathrm{~K}_{\mathrm{l}}=\frac{7}{10} \mathrm{mv}_{\mathrm{t}}^{2} \Rightarrow 7=\frac{7}{10} \times \frac{1}{2} \times \mathrm{v}_{\mathrm{t}}^{2} \Rightarrow \mathrm{v}_{\mathrm{t}}^{2}=20$
$\Rightarrow \mathrm{v}_{\mathrm{t}}=\sqrt{20} \approx 4.47 \mathrm{~ms}^{-1}$
Questions: 8:- A mass M hangs on a massless rod of length ℓ which rotates at a constant angular frequency. The mass M moves with steady speed in a circular path of constant radius. Assume that
the system is in steady circular motion with constant angular velocity ω. The angular momentum of M about point A is L_{A} which lies in the positive z direction and the angular momentum of M about point B is L_{B}. The correct statement for this system is:

(A) L_{A} is constant, both in magnitude and direction
(B) L_{B} is constant in direction with varying magnitude
(C) L_{A} and L_{B} are both constant in magnitude and direction
(D) L_{B} is constant, both in magnitude and direction

Ans:- A
$\overrightarrow{\mathrm{L}}_{\mathrm{A}}=\mathrm{Mvr} \hat{\mathrm{k}}=\mathrm{M} \mathrm{\omega r}^{2} \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{L}}_{\mathrm{B}}=(\mathrm{r} \cos \theta \hat{\mathrm{i}}+\sin \theta \hat{\mathrm{j}}-\ell \cos \alpha \hat{\mathrm{k}}) \times(\mathrm{M} \omega r)(-\sin \theta \hat{\mathrm{i}}+\cos \theta \hat{\mathrm{j}})$
Where $\theta=\omega t$
Magnitude \vec{L}_{B} is constant and direction changes with time
Questions: 9:- Which level of the single ionized carbon has the same energy as the ground state energy of hydrogen atom?
(A) 6
(B) 8
(C) 4
(D) 1

Ans:- A
As we know that
$\mathrm{E}_{\text {Ground }}(\mathrm{H}-$ atom $)=-13.6 \mathrm{eV}$
According to Question, we can write
$E_{\text {caroon }}=E_{\text {Ground }}(H-$ atom $) \Rightarrow-13.6 \mathrm{eV}=-13.6 \times \frac{6^{2}}{n^{2}} \Rightarrow n=6$

Questions: 10:- A modern grand - prix racing car of mass m is traveling on a flat track in a circular arc of radius R with a speed v. If the coefficient of static between the tyres and the track is μ_{s}, then the magnitude of negative lift F_{L} acting downwards on the car is:
(Assume forces on the four tyres are identical and $g=$ acceleration due to gravity)

(A) $m\left(\frac{v^{2}}{\mu_{s} R}-g\right)$
(B) $-m\left(g+\frac{v^{2}}{\mu_{s} R}\right)$
(C) $m\left(g-\frac{v^{2}}{\mu_{s} R}\right)$
(D) $m\left(\frac{v^{2}}{\mu_{s} R}+g\right)$

Ans:- A
$\mathrm{N}=\mathrm{mg}-\mathrm{F}_{\mathrm{L}}$
$f_{s}=\frac{m v^{2}}{R} \leq \mu_{S} N=\mu_{s}\left(m g-F_{L}\right) \Rightarrow\left|-F_{L}\right|=m\left(\frac{v^{2}}{\mu_{S} R}-g\right)$

Questions: 11:- The output of the given combination gates represents:

(A) NOR Gate
(C) XOR Gate
(B) NAND Gate
(D) AND Gate

Ans:- B

$\mathrm{Y}=\overline{\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}=\overline{\mathrm{AB}} \Rightarrow$ NAND Gate
Questions: 12:- A polyatomic ideal gas has 24 vibrational modes. What is the value of γ ?
(A) 1.30
(B) 1.03
(C) 10.03
(D) 1.37

Ans:- B
Since each vibrational mode has two degree of freedom, so
$\mathrm{f}=\mathrm{f}_{\text {Translational }}+\mathrm{f}_{\text {Rectayonal }}+\mathrm{f}_{\text {voravornal }}=3+3+48=54$
$\gamma=1+\frac{2}{f}=1+\frac{2}{54}=\frac{28}{27} \approx 1.03$

Questions: 13:- A solenoid of 1000 turns per meter has a core with relative permeability 500 . Insulated windings of the solenoid carry an electric current of 5 A . The magnetic flux density produced by the solenoid is: (permeability of free space $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$)
(A) $2 \times 10^{-3} \pi \mathrm{~T}$
(B) $\pi \mathrm{T}$
(C) $10^{-4} \pi \mathrm{~T}$
(D) $\frac{\pi}{5} \mathrm{~T}$

Ans:- B
$B=\mu n i=500 \times 4 \pi \times 10^{-7} \times 1000 \times 5=\pi$ Tesla

Questions: 14:- A Carnot's engine working between 400 K and 800 K has a work output of 1200J per cycle. The amount of heat energy supplied to the engine from the source in each cycle is:
(A) 3200 J
(B) 2400 J
(C) 1800 J
(D) 1600 J

Ans:- B
$\eta=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}}=1-\frac{400}{800}=\frac{1}{2} \Rightarrow \eta=\frac{\mathrm{W}}{\mathrm{Q}}=\frac{1}{2} \Rightarrow \mathrm{Q}=2 \mathrm{~W}=2400 \mathrm{~J}$.

Questions: 15:- When two soap bubbles of radii a and $\mathrm{b}(\mathrm{b}>\mathrm{a})$ coalesce, the radius of curvature of common surface is:
(A) $\frac{a b}{a+b}$
(B) $\frac{a b}{a-b}$
(C) $\frac{b-a}{a b}$
(D) $\frac{a+b}{a b}$

Ans:- B

$P_{1}-P_{0}=\frac{4 T}{a}$
$P_{2}-P_{0}=\frac{4 T}{b}$
$\Rightarrow P_{1}-P_{2}=4 T\left(\frac{1}{a}-\frac{1}{b}\right)$
$P_{1}-P_{2}=\frac{4 T}{r}=4 T\left(\frac{1}{a}-\frac{1}{b}\right) \Rightarrow r=\frac{a b}{b-a}$
Questions: 16:- For what value of displacement the kinetic energy and potential energy of a simple harmonic oscillation become equal?
(A) $x=0$
(B) $x= \pm A$
(C) $x= \pm \frac{A}{\sqrt{2}}$
(D) $x=\frac{A}{2}$

Ans:- C
As we know that
$K=\frac{1}{2} m A^{2} \omega^{2} \cos ^{2} \omega t=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)$ and $U=\frac{1}{2} m A^{2} \omega^{2} \sin ^{2} \omega t=\frac{1}{2} m \omega^{2} x^{2}$
According to Question, we can write
$K=U \Rightarrow \frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} m \omega^{2} x^{2} \Rightarrow A^{2}-x^{2}=x^{2} \Rightarrow x= \pm \frac{A}{\sqrt{2}}$
Questions: 17:- An AC current is given by $1=l_{1} \sin \omega t+l_{2} \cos \omega \mathrm{t}$. A hot wire ammeter will give a reading:
(A) $\frac{l_{1}+I_{2}}{2 \sqrt{2}}$
(B) $\sqrt{\frac{l^{2}+I_{2}^{2}}{2}}$
(C) $\frac{\mathrm{l}_{1}+\mathrm{I}_{2}}{\sqrt{2}}$
(D) $\sqrt{\frac{l_{1}^{2}-I_{2}^{2}}{2}}$

Ans:- B
A hot wire ammeter reads rms value of current, so

$$
\begin{aligned}
& I=I_{1} \sin \omega t+I_{2} \cos \omega t=\sqrt{l_{1}^{2}+I_{2}^{2}} \sin (\omega t+\phi)=I_{0} \sin (\omega t+\phi) \quad, \text { where } I_{0}=\sqrt{l_{1}^{2}+I_{2}^{2}} \\
& \Rightarrow I_{\mathrm{mms}}=\frac{I_{0}}{\sqrt{2}}=\sqrt{\frac{l_{1}^{2}+I_{2}^{2}}{2}}
\end{aligned}
$$

Questions: 18:- Two ideal polyatomic gages at temperatures T_{1} and T_{2} are mixed so that there is no loss of energy. If F_{1} and $\mathrm{F}_{2}, \mathrm{~m}_{1}$ and $\mathrm{m}_{2} \mathrm{n}_{1}$ and n_{2} be the degrees of freedom, masses, number of molecules of the first and second gas respectively, the temperature of mixture of these two gases is:
(A) $\frac{n_{1} T_{1}+n_{2} T_{2}}{n_{1}+n_{2}}$
(B) $\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{n_{1} F_{1}+n_{2} F_{2}}$
(C) $\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{F_{1}+F_{2}}$
(D) $\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{n_{1}+n_{2}}$

Ans:- B

$$
\begin{align*}
& U_{1}=\left(\frac{n_{1}}{N_{A}}\right)\left(\frac{F_{1} R}{2}\right) T_{1} \text { and } U_{2}=\left(\frac{n_{2}}{N_{A}}\right)\left(\frac{F_{2} R}{2}\right) T_{2} \\
& U=U_{1}+U_{2} \Rightarrow \frac{\left(n_{1}+n_{2}\right)}{N_{A}} \frac{(F R)}{2} T=\left(\frac{n_{1}}{N_{A}}\right)\left(\frac{F_{1} R}{2}\right) T_{1}+\left(\frac{n_{2}}{N_{A}}\right)\left(\frac{F_{2} R}{2}\right) T_{2} \tag{1}\\
& F=\frac{n_{1} F_{1}+n_{2} F_{2}}{n_{1}+n_{2}} \tag{2}
\end{align*}
$$

With the help of equations (1) and (2), we can write

$$
\Rightarrow T=\frac{n_{1} F_{1} T_{1}+n_{2} F_{2} T_{2}}{n_{1} F_{1}+n_{2} F_{2}}
$$

Questions: 19:- Two identical metal of thermal conductivities K_{1} and K_{2} respectively are connected in series. The effective thermal conductivity of the combination is:
(A) $\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
(B) $\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}$
(C) $\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
(D) $\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$

Ans:- C
$\mathrm{R}_{\text {eq }}=\mathrm{R}_{1}+\mathrm{R}_{2}=\frac{\ell}{\mathrm{K}_{1} \mathrm{~A}}+\frac{\ell}{\mathrm{K}_{2} \mathrm{~A}}=\frac{\ell}{\mathrm{A}}\left(\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}\right)=\frac{2 \ell}{\mathrm{KA}}$
$\Rightarrow \mathrm{K}=\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
Questions: 20:- If an electron is moving in the $\mathrm{n}^{\text {th }}$ orbit of the hydrogen atom, then its velocity $\left(v_{\mathrm{n}}\right)$ for the $\mathrm{n}^{\text {th }}$ orbit is given as:
(A) $v_{n} \alpha \frac{1}{n}$
(B) $v_{n} \alpha n^{2}$
(C) $v_{n} \alpha n$
(D) $v_{n} \alpha \frac{1}{n^{2}}$

Ans:- A
$\mathrm{v}_{\mathrm{n}} \alpha \frac{1}{\mathrm{n}}$

