JEE-MAIN-2021 (16тн March- second Shift)

PART - A (PHYSICS)

SECTION - A

(One Options Correct Type)

Questions: 1:- A mosquito is moving with a velocity $\bar{v}=0.5 t^{2} \hat{\imath}+3 t \hat{\jmath}+9 \hat{k} \mathrm{~m} / \mathrm{s}$ and accelerating in uniform conditions. What will be the direction of mosquito after 2 s ?
(A) $\tan ^{-1}\left(\frac{2}{3}\right)$ form $x-$ axis
(B) $\tan ^{-1}\left(\frac{5}{2}\right)$ form $y-a x i s$
(C) $\tan ^{-1}\left(\frac{5}{2}\right)$ form $x-$ axis
(D) $\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{2}{3}\right)$ form $y-$ axis

Ans: $-\overrightarrow{\mathrm{v}}=0.5 \mathrm{t}^{2} \hat{\imath}+3 \mathrm{t} \hat{\jmath}+9 \hat{\mathrm{k}} \mathrm{m} / \mathrm{s} \Rightarrow \overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=(\mathrm{t} \hat{\imath}+3 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
At $\mathrm{t}=2 \mathrm{sec}, \overrightarrow{\mathrm{v}}=2 \hat{\imath}+6 \hat{\jmath}+9 \hat{\mathrm{k}} \mathrm{m} / \mathrm{s}$ and $\overrightarrow{\mathrm{a}}=(2 \hat{\imath}+3 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
If we write the direction of acceleration of mosquito after 2 s , then it will be $\tan ^{-1}\left(\frac{2}{3}\right)$ from y-axis
Questions: 2:- In order to determine the young's modulus of a wire of radius 0.2 cm (measured using a scale of least count $=0.001 \mathrm{~cm}$) and length 1 m (measured using a scale of least count $=1$ mm), a weight of mass 1 kg (measured using a scale of least count $=1 \mathrm{~g}$) was hanged to get the elongation of 0.5 cm (measured using a scale of least count 0.001 cm .) What will be the fractional error in the value of young's modulus determined by this experiment?
(A) 9%
(B) 0.9%
(C) 0.14%
(D) 1.4%

Ans:- Using hook's law:
$\sigma=\mathrm{Y} \varepsilon$
$\Rightarrow \frac{\mathrm{f}}{\mathrm{A}}=\mathrm{Y} \frac{\mathrm{x}}{\ell} \Rightarrow \mathrm{Y}=\frac{\mathrm{f} \ell}{\mathrm{xA}}=\frac{\mathrm{f} \ell}{\mathrm{x} \pi \mathrm{r}^{2}}$
Using error analysis formula:
$\Rightarrow \frac{\Delta \mathrm{Y}}{\mathrm{Y}}=\frac{\Delta \mathrm{f}}{\mathrm{f}}+\frac{\Delta \ell}{\ell}+\frac{\Delta \mathrm{x}}{\mathrm{x}}+2 \frac{\Delta \mathrm{r}}{\mathrm{r}}$
$\Rightarrow \%$ error in $\mathrm{Y}=\left[\frac{1}{1000}+\frac{1}{1000}+\frac{0.001}{0.5}+\frac{2 \times 0.001}{0.2}\right] \times 100=1.4 \%$
Questions: 3:- The magnetic field in a region is given by $\bar{B}=B_{0}\left(\frac{x}{a}\right) \hat{k}$. A square loop of side d is placed with its edges along the x and y axes. The loop is moved with a constant velocity $\bar{v}=v_{0}$. The emf induced in the loop is:

(A) $\frac{B_{0} v_{0} d^{2}}{a}$
(B) $\frac{B_{0} v_{0} d}{2 a}$
(C) $\frac{B_{0} v_{0}^{2} d^{2}}{2 a}$
(D) $\frac{B_{0} v_{0} d^{2}}{2 a}$

Ans:- Since $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{v}}$ and length are perpendicular
$\varepsilon=\mathrm{Bv} \ell$
emf will induce only in wire CD
$\varepsilon=B_{0}\left(\frac{d}{a}\right) v_{0}(d)=\frac{B_{0} v_{0} d^{2}}{a}$
Questions: 4:- Calculate the value of mean free path (λ) for oxygen molecules at temperature 27^{0} C and pressure $1.01 \times 10^{5} \mathrm{~Pa}$. Assume the molecular diameter 0.3 nm and the gas is ideal. ($\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$)
(A) 58 nm
(B) 86 nm
(C) 32 nm
(D) 102 nm

Ans: $\boldsymbol{\lambda}=\frac{\mathrm{kT}}{\sqrt{2} \pi d^{2} \mathrm{P}}=\frac{1.38 \times 10^{-23} \times 300}{1.4 \times 3.14 \times\left(0.3 \times 10^{-9}\right)^{2} \times 1.01 \times 10^{5}}=102 \mathrm{~nm}$
Questions: 5:- Calculate the time interval between 33\% decay and 67\% decay if half-life of a substance is 20 minutes.
(A) 13 minutes
(B) 60 minutes
(C) 40 minutes
(D) 20 minutes

Ans:- $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{0}}=\mathrm{e}^{-\lambda \mathrm{t}} \Rightarrow \frac{2}{3}=\mathrm{e}^{-\lambda \mathrm{t}} \Rightarrow \mathrm{t}_{1}=\frac{1}{\lambda} \ln \left(\frac{3}{2}\right)$
Similarly we can write $t_{2}=\frac{1}{\lambda} \ln (3)$
$\Delta \mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{1}{\lambda}\left[\ln (3)-\ell \mathrm{n}\left(\frac{3}{2}\right)\right]=\frac{\ell \mathrm{n}(2)}{\lambda}=\mathrm{T}_{\frac{1}{2}}=20 \mathrm{~min}$
Questions: 6:- The following logic gate is equivalent to:

(A) NAND Gate
(B) AND Gate
(C) NOR Gate
(D) OR Gate

Ans:- Since output $Y=\overline{A+B}$, so it will represent NOR-Gate.

Questions: 7:- Red light differs from blue light as they have:
(A) Different frequencies and same wavelengths
(B) Same frequencies and same wavelengths
(C) Same frequencies and different wavelengths
(D) Different frequencies and different wavelengths

Ans:- Since speed of light is constant for all colour so red colour and blue colour have different frequencies and different wavelengths

Questions: 8:- What will be the nature of flow of water form a circular tap, when its flow rate increased from $0.18 \mathrm{~L} / \mathrm{min}$ to $0.48 \mathrm{~L} / \mathrm{min}$? The radius of the tap and viscosity of water are 0.5 cm and $10^{-3} \mathrm{~Pa} \mathrm{~s}$, respectively.
(Density of water: $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)
(A) Remains steady flow
(B) Unsteady to steady flow
(C) Remains turbulent flow
(D) Steady flow to unsteady flow

Ans:- As we know that Reynolds's number $R=\frac{\rho v D}{\eta}$
In First case $v_{1}=\frac{0.18 \times 10^{-3}}{\pi \times\left(0.5 \times 10^{-2}\right)^{2} \times 60}=\frac{0.18 \times 10^{-3} \times 10^{6} \times 4}{\pi \times 25 \times 60 \times 4}=\frac{0.18 \times 4}{\pi \times 6}=0.03822 \mathrm{~m} / \mathrm{s}$
$R=\frac{0.03822 \times 10^{3} \times 0.1}{10^{-3}}=3822<4000 \Rightarrow$ Steady
In Second case $\mathrm{V}_{2}=\frac{0.48 \times 10^{-3}}{\pi \times\left(0.5 \times 10^{-2}\right)^{2} \times 60}=\frac{0.48 \times 10^{-3} \times 10^{6} \times 4}{\pi \times 25 \times 60 \times 4}=\frac{0.48 \times 4}{\pi \times 6}=0.10191 \mathrm{~m} / \mathrm{s}$
$\mathrm{R}_{2}=\frac{0.10191 \times 10^{3} \times 0.1}{10^{-3}}=10191>4000 \Rightarrow$ Turbulent
Questions: 9:- A large block of wood of mass $\mathrm{M}=5.99 \mathrm{~kg}$ is hanging form two long massless cords. A bullet of mass $\mathrm{m}=10 \mathrm{~g}$ is fired into the block and gets embedded in it. The (block + bullet) then swing upwards, their centre of mass rising a vertical distance $h=9.8 \mathrm{~cm}$ before the (block + bullet) pendulum comes momentarily to rest at the end of its arc. The speed of the bullet just before collision is: (take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$)

(A) $821.4 \mathrm{~m} / \mathrm{s}$
(B) $811.4 \mathrm{~m} / \mathrm{s}$
(C) $831.4 \mathrm{~m} / \mathrm{s}$
(D) $841.4 \mathrm{~m} / \mathrm{s}$

Ans:- Using conservation of IInear momentum, we can write
$\mathrm{P}_{\mathrm{l}}=\mathrm{P}_{\mathrm{t}} \Rightarrow \mathrm{mv}=\mathrm{M}(\mathrm{m}+\mathrm{m}) \mathrm{v}^{\prime}$
Using conservation of Mechanical energy, we can write
$\frac{1}{2}(M+m)\left(v^{\prime}\right)^{2}=(M+m) g h \Rightarrow \frac{1}{2}\left(\frac{m v}{M+m}\right)^{2}=g h$
$\Rightarrow \mathrm{v}=\frac{\mathrm{M}+\mathrm{m}}{\mathrm{m}} \sqrt{2 \mathrm{gh}}=\frac{6}{10 \times 10^{-3}} \sqrt{2 \times 9.8 \times 0.098}=\frac{6}{10 \times 10^{-3}} \sqrt{2 \times \frac{98}{10} \times \frac{98}{1000}}$
$\Rightarrow \mathrm{v}=\frac{6 \times 98 \times 1.414}{10 \times 10^{-3} \times 10^{2}}=831.432 \mathrm{~m} / \mathrm{s} \approx 831.4 \mathrm{~m} / \mathrm{s}$
Questions: 10:- A charge Q is moving $d \bar{\ell}$ distance in the magnetic field \bar{B}. Find the value of work done by \bar{B}.
(A) 1
(B) Zero
(C) Infinite
(D) -1

Ans:- As we know that magnetic force acting on a charge particle will be
$\bar{F}=q(\bar{v} \times \bar{B})$
$W=\bar{F} \cdot d \bar{\ell}$
Since force and displacement will be always perpendicular so work done is always zero.

Questions: 11:- Two identical antennas on identical towers are separated from each other by a distance of 45 km . What should be the minimum height of receiving antenna to receive the signals in line of sight?
(Assume radius of earth is 6400 km)
(A) 79.1 m
(B) 19.77 m
(C) 39.55 m
(D) 158.2 m

Ans:- $d=d_{1}+d_{2}=2 \sqrt{2 h R}$
$h=\frac{d^{2}}{8 R}$
$\Rightarrow h=\frac{(45 \times 1000)^{2}}{8 \times 6400 \times 1000} \approx 39.55 \mathrm{~m}$

Questions: 12:- Amplitude of a mass-spring system, which is executing simple harmonic motion decreases with time. If mass 500 g . Decay constant $20 \mathrm{~g} / \mathrm{s}$ then how much time is required for the amplitude of the system to drop to half of its initial value?
(In $2=0.693$)
(A) 34.65 s
(B) 15.01 s
(C) 17.32 s
(D) 0.034 s

Ans:- As we know that for damping Oscillation
$\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\frac{\mathrm{b}}{2 \mathrm{~m}} 1} \Rightarrow \mathrm{t}_{\frac{1}{2}}=\frac{\ell \mathrm{n}(2)}{\frac{\mathrm{b}}{2 \mathrm{~m}}}=\frac{2 \mathrm{~m} \ell \mathrm{n}(2)}{\mathrm{b}}=\frac{2 \times 500 \times 0.693}{20}=35.65 \mathrm{~s}$
Questions: 13:- The half- life of Au^{198} is 2.7 days. The activity of 1.50 mg of Au^{198} if its atomic weight is $198 \mathrm{~g} \mathrm{~mol}^{-1}$ is $\left(\mathrm{N}_{\mathrm{A}}=6 \times 10^{23} / \mathrm{mol}\right)$.
(A) 240 Ci
(B) 252 Ci
(C) 535 Ci
(D) $357 \mathbf{C i}$

Ans:- A = Activity $=\lambda \mathrm{N}=\left(\frac{\ell \mathrm{n}(2)}{\mathrm{t}_{\frac{1}{2}}}\right) \mathrm{N}=\left(\frac{0.693}{27 \times 24 \times 3600}\right) \times\left(\frac{1.5 \times 10^{-3}}{198} \times 6 \times 10^{23}\right)$ disintegration is
$\Rightarrow \mathrm{A}=\left(\frac{0.693}{27 \times 24 \times 3600}\right) \times\left(\frac{1.5 \times 10^{-3}}{198} \times 6 \times 10^{23}\right) \times \frac{1}{3.7 \times 10^{10}} \approx 357 \mathrm{Ci}$
Questions: 14:- The de - Broglie wavelength associated with an electron and a proton were calculated by accelerating them through same potential of 100 V . What should be the ratio of their wavelengths?
$\left(\mathrm{m}_{\mathrm{P}}=1.00727 \mathrm{u}, \mathrm{m}_{\mathrm{e}}=0.00055 \mathrm{u}\right)$
(A) 43: 1
(B) 41.4: 1
(C) 41.3: 1
(D) 1860: 1

Ans:- Using de-Broglie equation:
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{Km}}}=\frac{\mathrm{h}}{\sqrt{2(\mathrm{eV}) \mathrm{m}}} \Rightarrow \lambda \alpha \frac{1}{\sqrt{\mathrm{~m}}}$
$\Rightarrow \frac{\lambda_{\mathrm{e}}}{\lambda_{\mathrm{p}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{p}}}{\mathrm{m}_{\mathrm{e}}}}=\sqrt{1831} \approx 43: 1$
Questions: 15:- A bimetallic strip consists of metals A and B. It is mounted rigidly as shown. The metal A has higher coefficient of expansion compared to that metal B. When bimetallic strip is placed in a cold bath, it will

(A) Neither bend nor shrink
(B) Not bend but shrink
(C) Bend towards the left
(D) Bend to wards the right

Ans:- The decrement in length is more for metal strip-A than metal strip-B, so the combined system bend towards the left.

Questions: 16:- The refractive index of converging lens is 1.4. What will be the focal length of this if it is placed in a medium of same refractive index? Assume the radii of curvature of the faces of lens are R_{1} and R_{2} respectively.
(A) 1
(B) $\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}-\mathrm{R}_{2}}$
(C) Infinite
(D) Zero

Ans:- Using lens make formula, we can write
$\frac{1}{f}=\left(\frac{1}{\mu_{0}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\mu=\mu_{0} \Rightarrow \frac{1}{f}=0 \Rightarrow f \Rightarrow$ Infinite

Questions: 17:- Find out the surface charge density at the intersection of point $\mathrm{x}=3 \mathrm{~m}$ plane and x - axis, in the region of uniform line charge of $8 \mathrm{nC} / \mathrm{m}$ lying along the z -axis in free space.
(A) $0.424 \mathbf{n C ~ m}^{-2}$
(B) $47.88 \mathrm{C} / \mathrm{m}$
(C) $0.07 \mathrm{nC} \mathrm{m}^{-2}$
(D) $4.0 \mathrm{nC} \mathrm{m}^{-2}$

Ans:- According to Question, we can write
$\frac{\sigma}{\varepsilon_{0}}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}} \Rightarrow \sigma=\frac{\lambda}{2 \pi \mathrm{r}}=\frac{8 \times 10^{-9}}{2 \times 3.14 \times 3}=0.424 \mathrm{nCm}^{-2}$
Questions: 18:- Statement I: A cyclist is moving on an un-banked road with a speed of $7 \mathrm{kmh}^{-1}$ and takes a sharp circular turn along a path of radius of 2 m without reducing the speed. The static friction coefficient is 0.2 The cyclist will not slip and pass the curve ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$).
Statement II: If the road is at an angle of 45° cyclist can cross of the curve of 2 m radius with the speed of $18.5 \mathrm{kmh}^{-1}$ without slipping
In the light of the above statements, choose the correct the answer from the options given below.
(A) Statement I is incorrect and statement II is correct
(B) Both statement I and statement II are true
(C) Statement I is correct and statement II is incorrect
(D) Both statement I and statement II are false

Ans:- Statement - I: $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \leq \mathrm{f}_{\ell}=\mu \mathrm{mg} \Rightarrow \mathrm{v} \leq \sqrt{\mu \mathrm{gR}}=\sqrt{0.2 \times 10 \times 2}=2 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{v}_{\text {cyclist }}=7 \times \frac{5}{18}=1.94 \mathrm{~m} / \mathrm{s} \leq 2 \mathrm{~m} / \mathrm{s}$, so statement -I is correct
Statement - II: $\mathrm{v}_{\text {min }}=\sqrt{\mathrm{gR}\left(\frac{\tan \theta-\mu}{1+\mu \tan \theta}\right)}=\sqrt{10 \times 2\left(\frac{\tan 45^{\circ}-0.2}{1+0.2 \times \tan 45^{\circ}}\right)}=\sqrt{10 \times 2\left(\frac{1-0.2}{1-0.2 \times 1}\right)}=3.65 \mathrm{~m} / \mathrm{s}$
$v_{\text {max }}=\sqrt{g R\left(\frac{\tan \theta+\mu}{1-\mu \tan \theta}\right)}=\sqrt{10 \times 2\left(\frac{\tan 45^{\circ}+0.2}{1-0.2 \times \tan 45^{\circ}}\right)}=\sqrt{10 \times 2\left(\frac{1+0.2}{1-0.2 \times 1}\right)}=5.48 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{v}_{\min } \leq \mathrm{v}_{\text {cyclist }}=18.5 \times \frac{5}{18}=5.139 \mathrm{~m} / \mathrm{s} \leq \mathrm{v}_{\text {max }}$, so statement - II is correct
Questions: 19:- For the given circuit, comment on the type of transformer used.

(A) Step down transformer
(B) Auxilliary transformer
(C) Step- Up transformer
(D) Auto transformed
Ans:- Voltage across secondary source
$V_{s}=\frac{P}{i}=\frac{60}{0.11} \approx 545 \mathrm{~V}$

Since voltage across secondary source is more than primary source
\Rightarrow Step-up transformer.
Questions: 20:- A resistor develops 500J of thermal energy in 20 s when a current of 1.5 A is passed through it. If the current is increased from 1.5 A to 3 A , what will be the energy developed in 20 s .
(A) 2000 J
(B) 500 J
(C) 1000 J
(D) 1500 J

Ans:- Heat generated in the resistance
$\mathrm{H}=\mathrm{i}^{2} \mathrm{RT}$
$\mathrm{H}_{1}=500=(1.5)^{2} \mathrm{R}(20)$
$\mathrm{H}_{2}=\mathrm{H}=(3)^{2} \mathrm{R}(20) \Rightarrow \frac{500}{\mathrm{H}}=\frac{1}{4} \Rightarrow \mathrm{H}=2000 \mathrm{~J}$.

