PART -A (PHYSICS)

Questions: 1:- In the density measurement of a cube, the mass and edge length are measured as (10.00 ± 0.10) kg and (0.10 ± 0.01) m, respectively. The error in the measurement of density is:

(A)
$$0.10 \text{ kg/m}^3$$

(B) 0.31 kg/m^3

(C)
$$0.07 \text{ kg/m}^3$$

(D) 0.01 kg/m^3

Ans:- Bonus

$$\rho = \frac{m}{v}$$

Maximum % error in ρ will be given by

$$\frac{\Delta p}{p} \times 100\% = \left(\frac{\Delta m}{m}\right) \times 100\% + 3\left(\frac{\Delta L}{L}\right) \times 100\% \dots (i)$$

This is not applicable as error is big.

$$\rho_{min} = \frac{m_{min}}{v_{max}} = \frac{9.9}{(0.11)^3} = 7438 \text{ kg/m}^3$$

&
$$\rho_{\text{max}} = \frac{\text{m}_{\text{max}}}{\text{v}_{\text{min}}} = \frac{10.1}{(0.09)^3} = 13854.6 \text{ kg/m}^3$$

 $\Delta p = 6416.6 \text{ kg/m}^3$

No option is matching. Therefore this question should be awarded bonus.

Ouestions: 2:- The total number of turns and cross-section area in solenoid is fixed. However, its length L is varied by adjusting the separation between windings. The inductance of solenoid will be proportional to:

(B) L

(C)
$$1/L^2$$

(D) L^2

Ans:- A

 ϕ = NBA = LI

$$N \mu_0 n I \pi R^2 = LI$$

$$\mu_0 \prod_{\mu} R^2 = Li$$

$$N \mu_0 \frac{N}{\ell} I \pi R^2 = LI$$

N and R constant

Self inductance (L)
$$\propto \frac{1}{\ell} \propto \frac{1}{\text{length}}$$

Questions: 3:- The figure shows a Young's double slit experimental setup. It is observed that when a thin transparent sheet of thickness t and refractive index µ is put in front of one of the slits, the central maximum gets shifted by a distance equal to n fringe widths. If the wavelength of light used is λ , t will be:

$$(A) \frac{2nD\lambda}{a(\mu-1)}$$

(B)
$$\frac{nD\lambda}{a(\mu-1)}$$

(C)
$$\frac{2D\lambda}{a(\mu-1)}$$

$$\frac{D\lambda}{a(\mu-1)}$$

Ans:- D

Path difference at central maxima $\Delta x = (\mu - 1)t$, whole pattern will shift by same amount which will be given by

$$(\mu-1)t\frac{D}{d}=n\frac{\lambda D}{d}, \text{ according to eh question } t=\frac{n\lambda}{(\mu-1)}$$

No option is matching, therefore question should be award bonus.

.. Correct option should be (Bonus)

Questions: 4:- A system of three charges are placed as shown in the figure:

If D >> d, the potential energy of the system is best given by:

$$\frac{1}{4\pi\epsilon_{o}} \left[-\frac{q^{2}}{d} - \frac{qQd}{D^{2}} \right]$$

(A)
$$\frac{1}{4\pi\epsilon_o} \left[-\frac{q^2}{d} - \frac{qQd}{D^2} \right]$$
 (B) $\frac{1}{4\pi\epsilon_o} \left[-\frac{q^2}{d} - \frac{qQd}{2D^2} \right]$

(C)
$$\frac{1}{4\pi\epsilon_{o}} \left[-\frac{q^{2}}{d} + \frac{2qQd}{D^{2}} \right]$$

$$\frac{1}{4\pi\epsilon_o} \left[-\frac{q^2}{d} + \frac{2qQd}{D^2} \right] \qquad (D) \frac{1}{4\pi\epsilon_o} \left[+\frac{q^2}{d} - \frac{qQd}{D^2} \right]$$

Ans:- D

Utotal = Uself of dipole + Uinteraction

$$= -\frac{kq^2}{d} - \left(\frac{kQ}{D^2}\right)qd$$
$$= -k\left[\frac{q^2}{d} + \frac{qQd}{D^2}\right]$$

Questions: 5:- A moving coil galvanometer has resistance 50 Ω and it indicates full deflection at 4mA current. A voltmeter is made using this galvanometer and a 5 k Ω resistance. The maximum voltage, that can be measured using this voltamenter, will be close to:

(A) 15 V

(B) 20 V

(C) 10 V

(D) 40 V

Ans:- B

G =
$$50 \Omega$$

S = 5000Ω
 $I_g = 4 \times 10^{-3}$
V = $I_g (G + S)$
V = $4 \times 10^{-3} (50 + 5000)$
= $4 \times 10^{-3} (5050) = 20.2 \text{ volt}$

Questions: 6:- If 'M' is the mass of water that rises in a capillary tube of radius 'r', then mass of water which will rise in a capillary tube of radius '2r' is:

(A) 4 M

(B) M/2

(C) M

(D) 2 M

Ans:-D

Height of liquid rise in capillary tube $h = \frac{2T\cos\theta_c}{\rho rg}$

$$\Rightarrow h \propto \frac{1}{r}$$

When radius becomes double height become half

$$\therefore h' = \frac{h}{2}$$

Now, $M = \pi r^2 h \times \rho$ and $M' = \pi (2r)^2 (h/2) \times \rho = 2M$.

Questions: 7:- An NPN transistor is used in common emitter configuration as an amplifier with 1 $k\Omega$ load resistance. Signal voltage of 10 mV is applied across the base-emitter. This produces a 3 mA change in the collector current and 15 μ A change in the base current of the amplifier. The input resistance and voltage gain are:

(A) $0.67 \text{ k}\Omega$, 300

(B) $0.67 \text{ k}\Omega$, 200

(C) $0.33 \text{ k}\Omega$, 1.5

(D) $0.33 \text{ k}\Omega$, 300

Ans:-A

Input current = 15×10^{-6} Output current = 3×10^{-3} Resistance out put = 1000 $V_{input} = 10 \times 10^{-3}$ Now $V_{input} = r_{input} \times i_{input}$

Now
$$V_{input} = r_{input} \times i_{input}$$

 $10 \times 10^{-3} = r_{input} \times 15 \times 10^{-6}$
 $r_{input} = \frac{2000}{3} = 0.67 \text{ K}\Omega.$

Voltage gain =
$$\frac{V_{\text{output}}}{V_{\text{input}}} = \frac{1000 \times 3 \times 10^{-3}}{10 \times 10^{-3}} = 300$$

Questions: 8:- An HCl molecule has rotational, translational and vibrational motions. If the rms velocity of HCl molecules in its gaseous phase is \overline{v} , m is its mass and k_B is Boltzmann constant, then its temperature will be:

$$(A) \frac{m_{\nu}^{-2}}{3k_{\rm B}}$$

$$\frac{m_{\nu}}{7k_{\mu}}$$

 $\frac{\mathsf{m}_{\mathsf{V}}^{-2}}{\mathsf{F}_{\mathsf{V}}}$

<u>m</u>v

(C) 5k_e

(D) 6k_E

Ans:- A

According to equipartion energy theorem

$$\frac{1}{2}m(v_{ms}^2) = 3 \times \frac{1}{2}K_bT$$

$$T = \frac{mv_{rms}^2}{3k}$$

Questions:9:-

The electric field of light wave is given as $\vec{E} = 10^{-3} \cos \left(\frac{2\pi x}{5 \times 10^{-7}} - 2\pi \times 6 \times 10^{14} t \right) \hat{x} \frac{N}{C}$. This

light falls on a metal plate of work function 2eV. The stopping potential of the photoelectrons is:

(D)
$$2.0 \text{ V}$$

$$\omega = 6 \times 10^{14} \times 2\pi$$

$$f = 6 \times 10^{14}$$

$$C = f \lambda$$

$$\lambda = \frac{C}{f} = \frac{3 \times 10^8}{6 \times 10^{14}} = 5000 \text{ Å}$$

Energy of photon
$$\Rightarrow \frac{12375}{5000} = 2.475 \text{ eV}$$

From Einstein's equation

$$KE_{max} = E - \phi$$

$$eV_s = E - \phi$$

$$eV_s = 2.475 - 2$$

$$eV_0 = 0.475 eV$$

$$V_0 = 0.48 \text{ V}$$

Questions: 10:- Following figure shows two processes A and B for a gas. If ΔQ_A and ΔQ_B are the amount of heat absorbed by the system in two cases, and ΔU_A and ΔU_B are changes in internal energies, respectively, then:

(A)
$$\Delta Q_A = \Delta Q_B$$
; $\Delta U_A = \Delta U_B$

(A)
$$\Delta Q_A = \Delta Q_B$$
; $\Delta U_A = \Delta U_B$ (B) $\Delta Q_A > \Delta Q_B$; $\Delta U_A = \Delta U_B$

$$(C)$$
 $\Delta Q_A < \Delta Q_B$; $\Delta U_A < \Delta U_B$

(C)
$$\Delta Q_A < \Delta Q_B$$
; $\Delta U_A < \Delta U_B$ (D) $\Delta Q_A > \Delta Q_B$; $\Delta U_A > \Delta U_B$

Ans:- B

Initial and final states for both the processes are same.

$$\Delta U_A = \Delta U_B$$

Work done during process A is greater than in process B. Because area is more By First law of thermodynamics

$$\Delta Q = \Delta U + W$$

$$\Rightarrow \Delta Q_A > \Delta Q_B$$

Questions: 11:- A uniform cable of mass 'M' and length 'L' is placed on a horizontal surface such that its $\left(\frac{1}{n}\right)^{th}$ part is hanging below the edge of the surface. To lift the hanging part of the cable upto the surface, the work done should be:

(B)
$$\frac{MGL}{2n^2}$$

Ans:-B

Mass of the hanging part =
$$\frac{M}{n}$$

$$h_{COM} = \frac{L}{2n}$$

Work done W = mgh_{COM} =
$$\left(\frac{M}{n}\right)g\left(\frac{L}{2n}\right) = \frac{MgL}{2n^2}$$

Questions: 12:- The following bodies are made to roll up (without slipping) the same inclined plane from a horizontal place: (i) a ring of radius R, (ii) a solid cylinder of radius R/2 and (iii) a solid sphere of radius R/4. If, in each case, the speed of the center of mass at bottom of the incline is same, the ratio of the maximum heights they climb is:

(D)
$$2:3:4$$

Ans:- B

$$\frac{1}{2} \left(m + \frac{1}{R^2} \right) v^2 = mgh$$

If radius of gyration is k, then

$$h = \frac{\left(1 + \frac{k^2}{R^2}\right)v^2}{2g}; \frac{k_{ring}}{R_{ring}} = 1, \quad \frac{k_{solid\ cylinder}}{R_{solid\ cylinder}} = \frac{1}{\sqrt{2}}$$

$$\frac{k_{\text{solid sphere}}}{R_{\text{solid sphere}}} = \sqrt{\frac{2}{5}}$$

$$H_1: h_2: h_3:: (1+1): \left(1+\frac{1}{2}\right): \left(1+\frac{2}{5}\right):: 20:15:14$$

Therefore most appropriate option is (B)

Although which is not in correct sequence.

Questions: 13:- A signal A cos ω t is transmitted using $v_0 \sin \omega_0 t$ as carrier wave. The correct amplitude modulated (AM) signal is:

(A)
$$v_0 \sin \left[\omega_0 \left(1 + 0.01 A \sin \omega t \right) t \right]$$

$$(B)^{} v_{_{0}} \sin \omega_{_{0}} t + \frac{A}{2} \sin \left(\omega_{_{0}} - \omega\right) t + \frac{A}{2} \sin \left(\omega_{_{0}} + \omega\right) t$$

$$(C)$$
 $v_0 \sin \omega_0 t + A \cos \omega t$

$$(D) (v_0 + A) \cos \omega t \sin \omega_0 t$$

Ans:- B

Questions: 14:- A concave mirror for face viewing has focal length of 0.4 m. The distance at which you hold the mirror from your face in order to see your image upright with a magnification of 5 is:

(A) 0.16 m

(B) 1.60 m

(C) 0.24 m

(D) 0.32 m

Ans:- D

$$m = \frac{f}{f - u}$$

 $5 = \frac{-40}{-40 - u}$; $u = -32$ cm

Questions: 15:- Determine the charge on the capacitor in the following circuit:

(A) 200 μC

(B) 60 μC

(C) $10 \mu C$

(D) $2 \mu C$

Ans:- A

Different potential is shown at different points.

q = eV

 $q = 10\mu F \times 20 = 200 \mu C$

Questions: 16:- A rectangular coil (Dimension 5 cm x 2 cm) with 100 100 turns, carrying a current of 3 A in the clock-wise direction, is kept centered at the origin and in the X-Z plane. A magnetic field of 1 T is applied along X-axis. If the coil is tilted through 45° about Z-axis, then the torque on the coil is:

- (A) 0.42 Nm
- (B) 0.55 Nm
- (C) 0.27 Nm
- (D) 0.38 Nm

Ans:- **B**

$$\left| \overrightarrow{t} \right| = \left| \overline{M} \times \overline{B} \right|$$

 $\tau = NI \times A \times B \times \sin 45^{\circ}$

 $\tau = 0.27 \text{ Nm}$

Questions: 17:- A stationary horizontal disc is free to rotate about its axis. When a torque is applied on it, its kinetic energy as a function of θ , where θ is the angle by which it has rotated, is given as $k\theta^2$. If its moment of inertia is I then the angular acceleration of the disc is:

(A)
$$\frac{k}{I}\theta$$
 (B) $\frac{k}{2I}\theta$ (C) $\frac{k}{4I}\theta$ (D) $\frac{2k}{I}\theta$

Ans:- D

Kinetic energy KE =
$$\frac{1}{2}I\omega^2 = k\theta^2$$

$$\Rightarrow \omega^2 = \frac{2k\theta^2}{l} \Rightarrow \omega = \sqrt{\frac{2k}{l}} \theta \qquad ...(A)$$

Differentiate (A) wrt time \rightarrow

$$\frac{d\omega}{dt} = \alpha = \sqrt{\frac{2k}{l}} \left(\frac{d\theta}{dt} \right)$$

$$\Rightarrow \alpha = \sqrt{\frac{2k}{l}} \cdot \sqrt{\frac{2k}{l}} \theta \text{ {by (1)}}$$

$$\Rightarrow \alpha = \frac{2k}{l} \theta$$

Questions: 18:- A simple pendulum oscillating in air has period T. The bob of the pendulum is completely immersed in a non-viscous liquid. The density of the liquid is $1/6^{th}$ of the material of the bob. If the bob is inside liquid all the time, its period of oscillation in this liquid is:

(A)
$$2T\sqrt{\frac{1}{10}}$$
 (B) $2T\sqrt{\frac{1}{14}}$ (C) $4T\sqrt{\frac{1}{15}}$ (D) $4T\sqrt{\frac{1}{14}}$

For a simple pendulum T = $2\pi \sqrt{\frac{L}{g_{err}}}$

Situation 1: when pendulum is in air \rightarrow g_{eff} = g Situation 2:when pendulum is in liquid

$$\rightarrow \ g_{\text{eff}} = g \left(1 - \frac{\rho_{\text{liquid}}}{\rho_{\text{body}}} \right) = g \left(1 - \frac{1}{16} \right) = \frac{15g}{16}$$

So,
$$\frac{T'}{T} = \frac{2\pi \sqrt{\frac{L}{15g/16}}}{2\pi \sqrt{\frac{L}{g}}}$$

$$\Rightarrow$$
 T' = $\frac{4T}{\sqrt{15}}$

Questions: 19:- For a given gas at 1 atm pressure, rms speed of the molecules is 200 m/s at 127°C. At 2 atm pressure and at 227°C, the rms speed of the molecules will be:

(A)
$$80 \text{ m/s}$$

(B)
$$80\sqrt{5}$$
 m/s

(C)
$$100 \text{ m/s}$$

(D)
$$100\sqrt{5}$$
 m/s

Ans:- B

$$\begin{split} V_{rms} &= \sqrt{\frac{3RT}{M_w}} \\ \Rightarrow \quad v_{rms} \propto \quad \sqrt{T} \\ Now, \quad \frac{v}{200} &= \sqrt{\frac{500}{400}} \ \Rightarrow \frac{v}{200} = \frac{\sqrt{5}}{2} \end{split}$$

Now,
$$\frac{1}{200} = \sqrt{\frac{1}{400}} \Rightarrow \frac{1}{200} = \frac{1}{200}$$

 $\Rightarrow v = 100\sqrt{5} \text{ m/s}$

Questions:20:-

The magnetic field of a plane electromagnetic wave is given by:

 $\vec{B} = B_0 \hat{i} \left[\cos \left(kz - \omega t \right) \right] + B_1 \hat{j} \cos \left(kz - \omega t \right) \text{ where } B_0 = 3 \times 10^{-5} \text{T and } B_1 = 2 \times 10^{-6} \text{T}. \text{ The } B_1 = 2 \times 10^{-6} \text{T}.$ rms value of the force experienced by a stationary charge $Q = 10^{-4} = C$ at z = 0 is closet

(D)
$$3 \times 10^{-2} \text{N}$$

Ans:- D

Maximum electric field E = (B) (C)

$$\vec{\mathsf{E}}_{\scriptscriptstyle 0} = (3 \times 10^{-5}) \mathrm{c} \left(-\hat{\mathsf{j}} \right)$$

$$\vec{E}_{_{1}}=(2\!\times\!10^{_{-6}})\!\,c\left(-\hat{i}\right)$$

Maximum force

$$\vec{F}_{\rm net} = 10^{-4} \times 3 \times 10^8 \ \sqrt{(3 \times 10^{-5})^2 + (2 \times 10^{-6})^2} = 0.9 \ N$$

$$F_{\rm ms} = \frac{F_{\rm o}}{\sqrt{2}} = 0.6 \text{ N} \quad \text{(approx)}$$