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INTRODUCTION 

Many kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a 

watch, the swinging pendulum of a grandfather clock, the sound vibrations produced by a 

clarinet or an organ pipe, and the back-and-forth motion of the pistons in a car engine. This kind 

of motion, called periodic motion or oscillation, is the subject of this chapter. Understanding 

periodic motion will be essential for our later study of waves, sound, alternating electric currents, 

and light. 

A body that undergoes periodic motion always has a stable equilibrium position. When it 

is moved away from this position and released, a force or torque comes into play to pull it back 

toward equilibrium. But by the time it gets there, it has picked up some kinetic energy, so it 

overshoots, stopping somewhere on the other side, and is again pulled back toward equilibrium. 

Picture a ball rolling back and forth in a round bowl or a pendulum that swings back and forth 

past its straight-down position.  

We will concentrate on two simple examples of systems that can undergo periodic 

motions: spring-mass systems and pendulums. We will also study why oscillations often tend to 

die out with time and why some oscillations can build up to greater and greater displacements 

from equilibrium when periodically varying forces act.  

 

SIMPLE HARMONIC MOTION 

The simplest kind of oscillation occurs when the restoring force F, is directly proportional to the 

displacement from equilibrium x. This happens if the spring in figure is an ideal one that obeys 

Hooke's  law. The constant of proportionality between F and x is the force constant k. (You may 

want to review Hooke's law and the definition of the force constant. On either side of the 

equilibrium position, F, and x always have opposite signs. In Section 6.3 we represented the force 

acting on a stretched ideal spring as F, = kx. The x-component of force the spring exerts on the 

body is the negative of this, so the x-component of force F on the body is   

    F = – kx    (restoring force exerted by an ideal spring) 

This equation gives the correct magnitude and sign of the force, whether x is positive, negative, or 

zero. The force constant k is always positive and has units of N/m (a useful alternative set of units 

is kg/s2). We are assuming that there is no friction, gives the net force on the body. When the 

restoring force is directly proportional to the displacement from equilibrium, as given by the 
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oscillation is called simple harmonic motion, abbreviated SHM. The acceleration a = d2x/dt2 = 

F/m of a body in SHM is given by 

   𝑎 =
𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥   (Simple Harmonic Motion) 

The minus sign means the acceleration and displacement always have opposite signs. This 

`acceleration is not constant, so don't even think of using the constant- acceleration equations. 

We'll see shortly how to solve this equation to find the displacement x as a function of time. A 

body that undergoes simple harmonic motion is called a harmonic oscillator.  

 

 

 

 

 

 

 

 

 

 

Why is simple harmonic motion important? Keep in mind that not all periodic motions are simple 

harmonic; in periodic motion in general, the restoring force depends on displacement in a more 

complicated way than. But in many systems the restoring force is approximately proportional to 

displacement if the displacement is sufficiently small. That is, if the amplitude is small enough, the 

oscillations of such systems are approximately simple harmonic and therefore approximately 

described by. Thus we can use SHM as an approximate model for many different periodic motions, 

such as the vibration of the quartz crystal in a watch, the motion of a tuning fork, the electric 

current in an alternating-current circuit, and the oscillations of atoms in molecules and solids. 
 

EQUATIONS OF SIMPLE HARMONIC MOTION 

To explore the properties of simple harmonic motion, we must express the displacement x of the 

oscillating body as a function of time, x(t). The second derivative of this function, d2x/dt2, must be 

equal to (-k/m) times the function itself, as required. As we mentioned, the formulas for constant 

acceleration because the acceleration changes constantly as the displacement x changes. Instead, 

we’ll find x(t) by noticing a striking similarity between SHM and another form of motion that 

we've already studied in detail. 

Figure shows a top view of a horizontal disk of radius A with a ball attached to its rim at  point 

Q. The disk rotates with constant angular speed 𝜔  (measured in rad/s), so the ball moves in 

uniform circular motion. A horizontal light beam shines on the rotating disk and casts a shadow of 

the ball on a screen. The shadow at point P oscillates back and forth as the ball moves in a circle. 

We then arrange a body attached to an ideal spring, like the combination shown in figures. So that 

the body oscillates parallel to the shadow. We will prove that the motion of the body and the 

motion of the ball's shadow are identical if the amplitude of the body's oscillation is equal to the 
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disk radius A, and if the angular frequency 27πf of the oscillating body is equal to the angular 

speed w of the rotating disk. That is, simple harmonic motion is the projection of uniform circular 

motion onto a diameter. 

 

 

 

 

 

 

 

 

 

 

 

 

We can verify this remarkable statement by finding the acceleration of the shadow at P and 

comparing it to the acceleration of a body undergoing SHM. The circle in which the ball moves so 

that its projection matches the motion of the oscillating body is called the reference circle; we will 

call the point Q. The reference point. We take the reference circle to lie in the xy-plane, with the 

origin 0 at the center of the circle. At time t the vector OQ from the origin to the reference point Q 

makes an angle 𝜃the positive x-axis. As the point Q moves around the reference circle with 

constant angular speed 𝜔, the vector OQ rotates with the same angular speed. Such a rotating 

vector is called a phasor. (This term was in use long before the invention of the Star Trek stun gun 

with a similar name. The phasor method for analyzing oscillations is useful in many areas of 

physics.  

The x-component of the phasor at time t is just the x-coordinate of the point Q: 

     𝑥 = 𝐴 cos 𝜃 

This is also the x-coordinate of the shadow P, which is the projection of Q onto the x-axis. Hence 

the x-velocity of the shadow P along the x-axis is equal to the x-component of the velocity vector 

of the reference  point Q, and the x-acceleration of P is equal to the x-component of the 

acceleration vector of Q. Since point Q is in uniform circular motion, its acceleration vector 
𝑎𝑄
→  is l 

ways directed toward O. Furthermore, the  magnitude of 𝑎𝑄⃗⃗⃗⃗  ⃗  is constant and given by the 

angular speed squared times the radius of the circle.  

     𝑎𝑄 = 𝜔
2𝐴 

                         𝑎 = −𝑎𝑄 cos 𝜃 = −𝜔
2𝐴 cos 𝜃. 

          𝑎 = −𝜔2𝑥   

The acceleration of the point P is directly proportional to the displacement x and always has the 

opposite sign. These are precisely the hallmarks of simple harmonic motion. Exactly for the 
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acceleration of a harmonic oscillator, provided that the angular speed 𝜔 of the reference  point 

Q is related to the force constant k and mass m of the oscillating body by  

       𝜔2 =
𝑘

𝑚
,       or     𝜔 = √

𝑘

𝑚
  

We have been using the same symbol 𝜔 for the angular speed of the reference point Q and the 

angular  frequency of the oscillating point P. The reason is that these quantities are equal. If point 

Q makes one complete revolution in time T, then point P goes through one complete cycle of 

oscillation in the same time; hence T is the period of the oscillation. During time T the point Q 

moves through 2𝜋  radians, so its angular speed is 𝜔 = 2𝜋/𝑇.  But this is just for the angular 

frequency of the point P, which verifies our statement about the two interpretations of w. This is 

why we introduced angular frequency in this quantity makes the connection between oscillation 

and circular motion. So we reinterpret an expression for the angular frequency of simple harmonic 

motion for a body of mass m, acted on by a restoring force with force constant k:   

           𝜔 = √
𝑘

𝑚
   (Simple harmonic motion) 

When you start a body oscillating in SHM, the value of w is not yours to choose; it is 

predetermined by the values of k and m. The units of k are N/m or kg/s2, so k/m is in (kg/s2) /kg = 

S-2. When we take the square root we get S-1, or more properly rad/s because this is an angular 

frequency (recall that a radian is not a true unit).  

The frequency f and period T are –  

   𝑓 =
𝜔

2𝜋
=

1

2𝜋
 √

𝑘

𝑚
   (Simple harmonic motion) 

   𝑇 =
1

𝑓
=
2𝜋

𝜔
= 2𝜋 √

𝑘

𝑚
   (Simple harmonic motion) 

We see from Eq. that a larger mass m, with its greater inertia, will have less acceleration, move 

more slowly, and take a longer time for a complete cycle. In contrast, a stiffer spring (one with a 

larger force constant k) exerts a greater force at a given deformation x, causing greater 

acceleration, higher speeds, and a shorter time T per cycle. 

Equations show that the period and frequency of simple harmonic motion are completely 

determined by the mass m. and the force constant k. In simple harmonic motion. the period and 

frequency do not depend on the amplitude A. For given values of m and k, the time of one 

complete oscillation is the same whether the amplitude is large or small. Equation shows why we 

should expect this. Larger A means that the body reaches larger values of |x| and is subjected to 

larger restoring forces. This increases the average speed of the body over a complete cycle; this 

exactly compensates for having to travel a larger distance, so the same total 'time is involved. The 

oscillations of a tuning fork are essentially simple harmonic motion, which means that it always 

vibrates with the same frequency, independent of amplitude. This is why a tuning fork can be used 

as a standard for musical pitch. If it were not for this characteristic of simple harmonic motion, it 
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would be impossible to make familiar types of mechanical and electronic clocks run accurately or 

to play most musical instruments in tune. If you encounter an oscillating body with a period that 

does depend on the amplitude, the oscillation is not simple harmonic motion. 
 

THE SIMPLE PENDULUM 

A simple pendulum is an idealized model consisting of a point mass suspended by a mass less, 

unstretchable string. When the point mass is pulled to one side of its straight-down equilibrium 

position and released, it oscillates about the equilibrium position. Familiar situations such as a 

wrecking ball on a crane's cable or a person on a swing can be modeled as simple pendulums. The 

path of the point mass (sometimes called a pendulum bob) is not a straight line but the arc of a 

circle with radius L equal to the length of the string. We use as our coordinate the distance x 

measured along the arc. If the motion is simple harmonic, the restoring force must be directly 

proportional to x or (because 𝑥 = 𝐿𝜃) to 𝜃 Is it? 

We represent the forces on the mass in terms of tangential and radial components. The restoring 

force F is the tangential component of the net force: 

    𝐹 = −𝑚𝑔 sin 𝜃 

The restoring force is provided by gravity; the tension T merely acts to make the point mass move 

in an arc. The restoring force is proportional not to 𝜃 but to sine, so the motion is not simple 

harmonic. However, if the angle e is small, sine is very nearly equal to e in radians. For example, 

when 𝜃 = 0.1 rad (about 6°), sin 𝜃 = 0.0998, a difference of only 0.2%. With this approximation,  

    𝐹 = −𝑚𝑔𝜃 = −𝑚𝑔
𝑥

𝐿
,       or 

    𝐹 = −
𝑚𝑔

𝐿
𝑥 

  

 

 

 

 

 

 

 

 

 

The restoring force is then proportional to the coordinate for small displacements, and the force 

constant is k = mg/L. The angular frequency 𝜔 of a simple pendulum with small amplitude is 

 𝜔 = √
𝑘

𝑚
= √

𝑚𝑔/𝐿

𝑚
= √

𝑔

𝐿
   (Simple pendulum, small amplitude) 

 The corresponding frequency and period relations are   

   𝑓 =
𝜔

2𝜋
=

1

2𝜋
√
𝑔

𝐿
                  (Simple pendulum, small amplitude) 
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   𝑇 =
2𝜋

𝜔
=
1

𝑓
= 2𝜋 √

𝐿

𝑔
        (Simple pendulum, small amplitude) 

Note that these expressions do not involve the mass of the particle. This is because the restoring 

force, a  component of the particle's weight, is proportional to m. Thus the mass appears on both 

sides of   ∑
𝐹
→ = 𝑚

𝑎
→and cancels out. (This is the same physics that explains why bodies of 

different masses fall with the same acceleration in a vacuum.) For small oscillations, the period of 

a pendulum for a given value of g is determined entirely by its length. The dependence on L and g 

through is just what we should expect. A long pendulum has a longer period than a shorter one. 

Increasing g increases the restoring force, causing the frequency to increase and the period to 

decrease. We emphasize again that the motion of a pendulum is only approximately simple 

harmonic. W hen the amplitude is not small, the departures from simple harmonic motion can be 

substantial. But how small is "small"? The period can be expressed by an infinite series; when the 

maximum angular displacement is e, the period T is given by 

   𝑇 = 2𝜋√
𝐿

𝑔
 (1 +

12

22
sin2

Θ

2
+
12.32

22.42
sin4

Θ

2
+⋯)  

We can compute the period to any desired degree of precision by taking enough terms in the series. 

We invite you to check that when 𝜃 = 15° (on either side of the central position), the true period is 

longer than that given by the approximate less than 0.5%. The usefulness of the pendulum as a 

timekeeper depends on the period being very nearly independent of amplitude, provided that the 

amplitude is small. Thus, as a pendulum clock runs down and the amplitude of the swings 

decreases a little, the clock still keeps very nearly correct time.  

 

 

 

  

Question Practice online 


