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INTRODUCTION 

Ripples on a pond, musical sounds, seismic tremors triggered by an earthquake- all these are wave 

phenomena. Waves can occur whenever a system is disturbed from equilibrium and when the 

disturbance can travel, propagate, from one region of the system to another. As a wave propagates, 

it carries energy. The energy in light waves from the sun warms the surface of our planet; the 

energy in seismic waves can crack our planet's crust. 

This chapter and the next are about mechanical waves-waves that travel within some material 

called medium. We'll begin this chapter by deriving the basic equations for describing waves, 

including the important special case of sinusoidal waves in which the wave pattern is a repeating 

sine or cosine function. To help us understand waves in general, we'll look at the simple case of 

waves that travel on a stretched string or rope. 

Waves on a string play an important role in music. When a musician strums a guitar or 

bows a  violin, she makes waves that travel in opposite directions along the instrument's strings. 

What happens  when these oppositely directed waves overlap is called interference. We'll 

discover that sinusoidal waves can occur on a guitar or violin string only for certain special 

frequencies, called normal-mode frequencies, determined by the properties of the string. The 

normal-mode frequencies of a stringed instrument determine the pitch of the musical sounds that 

the instrument produces. (In the next chapter we'll find that interference also helps explain the 

pitches of wind instruments such as flutes and pipe organs.) 

Not all waves are mechanical in nature. Electromagnetic waves-including light, radio 

waves, infrared and ultraviolet radiation, and x rays-can propagate even in empty space, where 

there is no medium. We'll explore these and other non mechanical waves in later chapters. 

 

TYPES OF MECHANICAL WAVES 

A mechanical wave is a disturbance that travels through some material or substance called the 

medium for the wave. As the wave travels through the medium, the particles that make up the 

medium undergo  displacements of various kinds, depending on the nature of the wave. 

Shows three varieties of mechanical waves. The medium is a string or rope under tension. If we 

give the left end a small upward shake or wiggle, the wiggle travels along the length of the string. 

Successive sections of string go through the same motion that we gave to the end, but at 

successively later times. Because the displacements of the medium are perpendicular or transverse 

to the direction of travel of the wave along the medium, this is called a transverse wave. 
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The medium is a liquid or gas in a tube with a rigid wall at the right end and a movable piston a the 

left end. If we give the piston a single back-and-forth motion, displacement and pressure 

fluctuations travel down the length of the medium. This time the motions of the particles of the 

medium are back and forth along the same direction that the wave travels. We call this a 

longitudinal wave. 

The medium is a liquid in a channel, such as water in an irrigation ditch or canal. When we move 

the flat  board at the left end forward and back once, a wave disturbance travels down the length 

of the channel. In this case the displacements of the water have both longitudinal and transverse 

components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each of these systems has an equilibrium state. For the stretched string it is the state in which the 

system is at rest, stretched out along a straight line. For the fluid in a tube it is a state in which the 

fluid is at rest with uniform pressure. And for the liquid in a trough it is a smooth, level water 

surface. In each case the wave motion is a disturbance from the equilibrium state that travels from 

one region of the medium to another. And in each case there are forces that tend to restore the 

system to its equilibrium position when it is displaced, just as the force of gravity tends to pull a 

pendulum toward its straight-down equilibrium position when it is displaced. 

These examples have three things in common. First, in each case the disturbance travels or 

propagates with a definite speed through the medium. This speed is called the speed of 

propagation, or simply the wave speed. Its value is determined in each case by the mechanical 

properties of the medium.  We will use the symbol v for wave speed. (The wave speed is not 

the same as the speed with which particles move when they are disturbed by the wave. Second, the 

medium itself does not travel through space; its individual particles undergo back-and-forth or up-

and-down motions around their equilibrium positions. The overall pattern of the wave disturbance 

is what  travels. Third, to set any of these systems into motion, we have to put in energy by doing 

mechanical work on the system. The wave motion transports this energy from one region of the 

medium to another. 
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PERIODIC WAVES 
The transverse wave on a stretched string in is an example of a wave pulse. The hand shakes the 

string upand down just once, exerting a transverse force on it as it does so. The result is a single 

"wiggle," or pulse, that travels along the length of the string. The tension in the string restores its 

straight-line shape once the pulse has passed. 

A more interesting situation develops when we give the free end of the string a repetitive, 

or periodic, motion. Then each particle in the string also undergoes periodic motion as the wave 

propagates, and we have a periodic wave. 

In particular, suppose we move the string up and down with simple harmonic motion (SHM) with 

amplitude A, frequency 1, angular frequency 𝜔 = 2𝜋𝑓,  and period 𝑇 = 1/𝑓 = 2𝜋/𝜔.  Figure 

shows one way to do this. The wave that results is a symmetrical sequence of crests and troughs. 

As we will see,  periodic waves with simple harmonic motion are particularly easy to analyze; we 

call them sinusoidal waves. It also turns out that any periodic wave can be represented as a 

combination of sinusoidal waves. So this particular kind of wave motion is worth special attention. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The wave that advances along the string is a continuous succession of transverse sinusoidal 

disturbances. Figure shows the shape of a part of the string near the left end at time intervals of 

1/8 of a period, for a total time of one period. The wave shape advances steadily toward the right, 

as indicated by the highlighted area. As the wave moves, any point on the string (any of the red 

dots, for example) oscillates up and down about its equilibrium position with simple harmonic 

motion. When a sinusoidal wave passes through a medium, every particle in the medium 

undergoes simple harmonic motion with the same frequency. 

 Wave motion vs. particle motion be very careful to  distinguish between the motion of the 

transverse wave along  the string and  the motion of a particle of the string. The wave   moves 

with  constant speed v along the length of the string, while the motion of the particle is simple 

harmonic and transverse (perpendicular)  to the length of the string. 

 For a periodic wave, the shape of the string at any  Instant is a repeating pattern. The length of 

one complete Wave pattern is the distance from one crest to the next, or From one trough to the 

next, or from any point to the 

Corresponding point on the next repetition of the wave shape. We call this distance the wavelength 

of the wave, denoted by 𝜆 (the Greek letter lambda).  
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The wave pattern travels with constant speed u and  

advances a distance of one wavelength 𝜆 in a time  

interval of one period T. So the  wave speed v is 

Given by𝑣 = 𝜆/𝑇, because 𝑓 = 1/𝑇. 

  𝑣 = 𝜆𝑓          (periodic wave) 

The speed of propagation equals the product of  

wavelength and frequency. The frequency is a property 

of the entire periodic wave because all points on the  

string oscillate with the same frequency of waves on a 

String propagate in just one dimension. But the ideas of  

frequency, wavelength, and amplitude apply equally  

well to waves that propagate in two or three dimensions.  

Shows a wave propagating in two dimensions on the  

surface of a tank of water.  As with waves on a string,  

the wavelength is the distance from one crest to the next,  

and the amplitude is the height of a crest above the  

equilibrium level. In many important situations including waves on a string, wave speed v is 

determined entirely by the mechanical properties of the medium. In this case, increasing f causes𝜆 

to decrease so that the product 𝑣 = 𝜆𝑓 remains the same, and waves of all frequencies propagate 

with the same wave speed. In this chapter we will consider only waves of this kind. (In later 

chapters we will study the propagation of light waves in matter for which the wave speed depends 

on frequency; this turns out to be the reason prisms break white light into a spectrum and raindrops 

create a rainbow.) 

 To understand the mechanics of a periodic longitudinal wave, we consider a long tube filled 

with a fluid, with a piston at the left end as in Fig. If we push the piston in, we compress the fluid 

near the piston, increasing the pressure in this region. This region then pushes against the 

neighboring region of fluid, and so on, and a wave pulse moves along the tube. Now suppose we 

move the piston back and forth with simple harmonic motion, along a line parallel to the axis of 

the tube. This motion forms regions in the fluid where the pressure and density are greater or less 

than the equilibrium values. We call a region of increased density a compression; a region of 

reduced density is a rarefaction. Shows compressions as darkly shaded areas and rarefactions as 

lightly shaded areas. The wavelength is the distance from one compression to the next or from one 

rarefaction to the next. 

The wave propagating in the fluid-filled tube at time 

intervals of 1/8 of a period, for a total time of one period.  

The pattern of compressions and rarefactions moves steadily  

to the right, just like the pattern of crests and troughs in a 

sinusoidal transverse wave. Each particle in the fluid  
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oscillates in SHM parallel to the direction of wave  

propagation (that is, left and right) with the same amplitude  

A and period T as the piston. The particles shown by the two  

red dots are one wavelength apart, and so oscillate in phase  

with each other.  

Just like the sinusoidal transverse wave, in one period T the  

longitudinal wave travels one wavelength 𝜆 to the right. Hence  

the fundamental equation 𝑣 = 𝜆𝑓 holds for longitudinal waves 

 as well as for transverse waves, and indeed for all types of  

periodic waves. Just as for transverse waves, in this chapter 

and the next we will consider only situations in which the  

speed of longitudinal waves does not depend on the 

frequency. 

 

WAVE FUNCTION FOR A SINUSOIDAL WAVE 

Let's see how to determine the form of the wave function for a sinusoidal wave. Suppose a 

sinusoidal wave travels from left to right (the direction of increasing x) along the string. Every 

particle of the string oscillates with simple harmonic motion with the same amplitude and 

frequency. But the oscillations of particles at different points on the string are not all in step with 

each other. The particle at point B is at its maximum positive value of y at t = 0 and returns to y = 0 

at t = 2/8 T; these same events occur for a particle at point A or point C at t = 4/8 T and t = 6/8T, 

exactly one half-period later. For any two particles of the string, the motion of the particle on the 

right (in terms of the wave, the "downstream" particle) lags behind the motion of the particle on 

the left by an amount proportional to the distance between the particles. 

Hence the cyclic motions of various points on the string are out of step with each other by various 

fractions of a cycle. We call these differences phase differences, and we say that the phase of the 

motion is different for different points. For example, if one point has its maximum positive 

displacement at the same time that another has its maximum negative displacement, the two are a 

half cycle out of phase. (This is the case for points A and B, or points B and C.) 

 Suppose that the displacement of a particle at the left end of the string (x = 0), where the wave 

originates, is given by –  

   𝑦(𝑥 = 0, 𝑡) = 𝐴 sin𝜔𝑡 = 𝐴 sin 2𝜋 𝑓𝑡. 

That is, the particle oscillates in simple harmonic motion with amplitude A, frequency f, and 

angular frequency 𝜔 = 2𝜋𝑓. The notation y (x = 0, t) reminds us that the motion of this particle is 

a special case of the wave function y (x, t) that describes the entire wave. At t = 0 the particle at x = 

0 is at its maximum positive displacement (y = A) and is instantaneously at rest (because the value 

of y is a maximum). 
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The wave disturbance travels from x = 0 to some point x to the right of the origin in an amount of 

time given by x/v, where v is the wave speed. So the motion of point x at time t is the same as the 

motion of point x = 0 at the earlier time  𝑡 − 𝑥/𝑣. Hence we can find the displacement of point x at 

time t by simply replacing t by (𝑡 − 𝑥𝑙𝑣 ). When we do that, we find the following expression for 

the wave function: 

 𝑦(𝑥, 𝑡) = 𝐴 sin𝜔 (𝑡 −
𝑥

𝑣
) = 𝑎 sin 2𝜋𝑓 (𝑡 −

𝑥

𝑣
) (Sinusoidal wave moving in + x-direction) 

 The displacement y(x, t) is a function of both the location x of the point and the time t. We 

could make more general by allowing for different values of the phase angle, as we did for simple 

harmonic motion but for now we omit this. We can rewrite the wave function given by several 

different but useful forms. We can express it in terms of the period T = 1/f  and the wavelength 

𝜆 = 𝑣/𝑓: 

 𝑦(𝑥, 𝑡) = 𝐴 sin 2𝜋 (
1

𝑇
−
𝑥

𝑣
)  (Sinusoidal wave moving in + x-direction) 

We get another convenient form of the wave function if we define a quantity k, called the wave 

number: 

           𝑘 =
2𝜋

𝜆
  (wave number) 

Substituting 𝜆 = 2𝜋/𝑘 and 𝑓 = 𝜔/2𝜋 into the wavelength-frequency relationship 𝑣 = 𝜆𝑓 gives 

    𝜔 = 𝑣𝑘  (periodic wave) 

                                    𝑦(𝑥, 𝑡) = 𝐴 sin(𝜔𝑡 − 𝑘𝑥)   (Sinusoidal wave moving in + 𝑥 − direction) 

Which of these various forms for the wave function y (x, t) we use in any specific problem is a 

matter of convenience. Note that 𝜔 has units rad/s, so for unit consistency the wave number k must 

have the units rad/m. (Some physicists define the wave number as 1/𝜆 rather than 2𝜋/𝜆. When 

reading other texts, be sure to determine how this term is defined.) 

 

 

 

 

 

 

 

The wave function y (x, t) is graphed as a function of x for a specific time t. This graph gives the 

displacement y of a particle from its equilibrium position as a function of the coordinate x of the 

particle. If the wave is a transverse wave on a string, the graph  represents the shape of the string at 

that instant, like a flash photograph of the string. In particular, at time t = 0, 

  𝑦(𝑥, 𝑡 = 0) = 𝐴 sin(−𝑘𝑥) = −𝐴 sin 𝑘𝑥 = −𝐴 sin 2𝜋
𝑥

𝜆
.  

A graph of the wave function versus time t for a specific coordinate x. This graph gives the 

displacement y of the particle at that coordinate as a function of time; that is, it describes the 

motion of that particle. In particular, at the position x = 0, 
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  𝑦(𝑥, = 0, 𝑡) = 𝐴 sin𝜔𝑡 = 𝐴 sin 2𝜋
𝑡

𝑇
.  

  𝑦(𝑥, 𝑡) = 𝐴 sin 2𝜋𝑓 (𝑡 +
𝑥

𝑣
) = 𝐴 sin 2𝜋 (

1

𝑇
+
𝑥

𝜆
) 

              = 𝐴 sin(𝜔𝑡 + 𝑘𝑥) (sinusoidal wave moving in − 𝑥 − direction) 

In the expression 𝑦(𝑥, 𝑡) = 𝐴 sin(𝜔𝑡 ± 𝑘𝑥) for a wave traveling in the –x or + x-direction, the 

quantity (𝜔𝑡 ± 𝑘𝑥) is called the phase. It plays the role of an angular quantity (always measured in 

radians) and its value for any values of x and t determines what part of the sinusoidal cycle is 

occurring at a particular point and time. For a crest (where y = A and the cosine function has the 

value 1), the phase could be 𝜋/2, 5𝜋/2, and so on; for a trough (where y = –A and the cosine has 

the value –1), it could be 𝜋, 3𝜋, 5𝜋, and so on.  

The wave speed is the speed with which we have to move along with the wave to keep alongside a 

point of a given phase, such as a particular crest of a wave on a string. For a wave traveling in the 

+ x direction, that means 𝜔𝑡 − 𝑘𝑥 = constant. Taking the derivative with respect to t, we find 𝜔 =

𝑘𝑑𝑥/𝑑𝑡, or 

    
𝑑𝑥

𝑑𝑡
=
𝜔

𝑘
. 

 Comparing this we see that dx/dt is equal to the speed v of the wave. Because of this 

relationship,  v is sometimes called the phase velocity of the wave. (Phase speed would be a 

better term.) 
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