

FLUID MECHANICS

Study the behavior of fluids at rest or in motion.
Fluids include both liquids and gases.
The science of fluids at rest is called fluid statics while that of moving fluids
Hydro - dynamics.
Contents of fluid statics: Hydrostatic pressure, floatation, Pascal's Law and Archimedes principle.
Contains of hydro-dynamics: Continuity equation, Bernoulli's principle and Torricelli's theorem. FLUID

Which can flow liquids and gasses together are called fluids.
MATTER
All substance within the universe or out side the universe will be matter.
Classification on the basis of Intermolecular Forces.

(1) Solids - Stronger intermolecular forces. Shape and size do not change easily.

(2) Liquids - Comparatively less intermolecular forces. shape can be change easily but volume can not change easily. To do so we have to change density.
(3) Gasses - Very small intermolecular forces. Shape and size (volume). Change easily because easy change in density.

ASSUMPTION FOR LIQUIDS

Liquids must be incompressible (density will be constant and will not change with change in pressure) and non-viscous (no tangential force only perpendicular forces between the layers of liquid also no friction between layers of liquid).
Density of a Liqiud: $\rho=\frac{\operatorname{mass}(\mathrm{m})}{\operatorname{Volume}(\mathrm{V})}$
Relative density (RD) RD $=\frac{\text { Density of substance }}{\text { Density of water at } 4^{\circ} \mathrm{c}}$
Density of a Mixture of two or more Liquids

Case I

$$
\begin{aligned}
\rho_{\mathrm{Mixt}} & =\frac{\text { Total mass }}{\text { Total volume }}=\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}} \\
& =\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\frac{\mathrm{~m}_{1}}{\rho_{1}}+\frac{\mathrm{m}_{2}}{\rho_{2}}}
\end{aligned}
$$

Mixture

If $\mathrm{m}_{1}=\mathrm{m}_{2} \rightarrow$ same mass
$\rho_{\text {Mixt }}=\frac{2 \rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}}$
Case II

Mixture

$$
\begin{aligned}
\rho_{\text {Mixt }} & =\frac{m_{1}+m_{2}}{V_{1}+V_{2}} \\
& =\frac{\rho_{1} V_{1}+\rho_{2} V_{2}}{V_{1}+V_{2}}
\end{aligned}
$$

If $V_{1}=V_{2} \rightarrow$ Same Volume
$\rho_{\text {Mixt }}=\frac{\rho_{1}+\rho_{2}}{2}$

PRESSURE

Defined as $\mathrm{F}_{\text {net }}$ or thrust per unit area if liquid is at rest.
$\mathrm{P}=\frac{\mathrm{F}_{\text {net }}}{\mathrm{A}}$ or $\mathrm{p}=\frac{\mathrm{F}_{\perp}}{\mathrm{A}}$
Units: pascal (Pa)or newton / metre ${ }^{2}\left(\mathrm{~N} /\right.$ met $\left.^{2}\right)$
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10$ dyne $/ \mathrm{cm}^{2}$
$1 \mathrm{~atm}=1.01 \mathrm{bar}=1.01 \times 10^{5} \mathrm{~Pa}=760$ torr $(\mathrm{mm}$ of Hg$)$
Or $1 \mathrm{~atm} \approx 1 \mathrm{bar} \approx 10^{5} \mathrm{~Pa}$

