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ENLIGHTNING YOUR FUTURE

KINETIC THEORY OF GASES

Chapter Thermodynamics

Day - 1

THERMODYNAMICS SYSTEM

Any collection of large number of gas particle having certain values of P, V, T and U.

Air Tight Beaker

Gas Molecule

THERMODYNAMICS PROCESS
Any relation between thermodynamics variables
Eq. PV> =T, U =PV etc.

F .
Pressure P = " Units, Newton/met’ or Pascal

P Increases P decreases

VOLUME

Volume of container will be the volume of gas

THERMAL PHYSICS Page 20



KINETIC THEORY OF GASES

|11 FAYSONS EnucaTioN

INTERNAL ENERGY (U)

v

Real gas

V

All gasses
are real

Y

Function of Temperature
and volume

WORK DONE
W =F.ds
=PAds
W =PdV
(i) IfP = constant
W =PdV
W =PAV
W=P (V-V)
(i)  IfP =variable

W= deV

(iii) Graphically
Area under the P —V diagram

v

Ideal or
perfect gas

Only some gasses at
certain conditions behave
like ideal gas

Function of Temperature only

P = const.
W =PV

IF

V> Vi— expansion
W+

We done by the gas
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I

KINETIC THEORY OF GASES

IF

V< V;— Compression
W —-—

Work done on the gas

First law of Thermodynamics
dQ=dU +dW

Thermodynamics system

Sign convention
dQ =+ if heat is given to system
- if heat is taken from the system
dW = + if volume increases or expansion
-if volume decrease or Compression
dU = + if Temperature increase
- if Temperature decrease
Specific Heat
dQ =nCdT
_do
" ndT
Amount of heat required for 1 mole of gas to raise the temperature by 1°C

Types of specific heat

(1) Specific heat at constant pressure (C,)
(2) Specific heat at Constant Volume (C,)
Mayer’s formula C,-C, =R

Also y = Z—p

Here v is constant depends on type of gas i.e. mono atomic Di atomic and Poly atomic
C
y=¢
v

vC, -Cy =R
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X % (ﬁ: X
Mono atomic Di atomic Tri atomic
Degree of Freedom for different gases
Atomicity of gas Example A B | f=@GBA-B) Figure
Monoatomic He, Ne, Ar 1 0 f=3
°A
Diatomi H N,, Cl 2 1 =5
tatomic 2 02’ 2 C 2 f A @ @B
etc. B
Triatomic non H,O 3 3 f=6 8
linear ¥y
A"""ii ..... »,
Triatomic linear CO,, BeCl, 3 2 f=17 A.BAB. A
Types of Thermodynamics Process
(1) Isobaric Process
P = Const. AP=0
By ideal gas equation
Pv=nRT
VoT
Vi 1
T, T
GRAPHICALLY
PJ L A P V A
>\ > T >T
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Work done

dW=PdV

I* Law of thermodynamics:
W=PAV

dQ = dU + dW {dU = nCyAT}
dQ=nC,AT +P AV {PAV =nRAT}
= nC,AT + nRAT

— nAT(C,+R)

dQ =nC,AT

(2) Isochoric Process
V=Const. AV=0=W=0
By ideal gas equation PV = nRT
P, P

T, T,

PocT

GRAPHICALLY

P V. p

By 1" Law

dQ=dU +dW

V=Const. AV=0, dW=0
dQ =dU {dU =nCvyAT}
Isothermal Process

T =Const. AT=0

U = Const. dU =0

PV =nRT

= PV = Const. (K)

Slow Process
e Conducting Vessel

e |dcal or Perfect Gas

P1V1 :P2V2
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dQ = dU + dw
dQ = dW

de= deV

Vo dv
=K fV1 7

Vaqy

JdW=nRTJ —
vV
1

W = nRT/n2
141
W = nRT/n2
P,
Also
W =2.303 nRTlogw%
1

W =2.303 nRTlog,, =X

P

GRAPHICALLY

Pa Vi

(4) Adiabatic Process
dQ =0, Q = Const.
PV’ = Const.
PV =nRT

nRT

v
nRT

- VY = Const.

TV"! = const.
Also
PV =nRT

_ nRT

=5

p (nRT )” _ Const
b = Const.

PY'T" = Const.

P4

>

Quick Process

——> Insulated Vessel

———>Ideal or perfect gas
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1" Law
dQ=dU +dW
0=dU +dwW
dW = -dU
Now

R
dwW = —DCVAT {CV = ]/Tl}
nR

y —1
nRAT

1 -y
W = nR(Tf— TL)

1-y
_ PV —RY;

1-vy

AT

= —

=

(5) Poly tropic Process
PV* = Const. =K
x#y x+1

PVF =P,V =K

w = deV

V2
= Kf V=*dv
Vi

Iv—x+1 IVZ

=

—x+1 vy
[szé( V2—X+1 _ P1Vf V1—X+1‘|

1—x
PRV, =PV,

B 1-—x

_ nRAT

T 1-x
Specific Heat
dQ =nCAT
C = i dQ =dU +dw
= du + dw

© nAT
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_du aw
T AT | AT
_nCAT | nRAT
C=—ar t nAT (1 — x)
R
C=Cy+ 1%

Difference in gram —molecular heats (C,, - C,) of an ideal Gas:
Mayer’s formula

Let T be the Kelvin temperature, P the pressure and V the volume of 1 mole of an ideal gas.
Let this state of the gas be represented by a point a on the pressure —volume curve at
temperature T to T + AT, so that it reaches from state a to state c. from the first law of
thermodynamics, the change in the internal energy of the gas in the process a — e is given by
U.-U,=Q-W re

T=AT

T

4
Where Q is the amount of heat taken by the gas and W is the work done by the gas since in

this process the volume of the gas has remained constant (AV = 0), so W=P AV =0 and Q
= C, AT (by defined)

U —U, = cvAT
Now, suppose the gas is restored to its original state a, its temperature is again raised from T
to T + AT but now at constant pressure, so that the gas reaches from state a to state b. The
change in the internal energy of the gas in the internal energy of the gas in the pressure a —b
is given by.

Up-U,=Q-W
But now Q = CpAT and W =P AV (since the gas expanded from V to V+ AV at pressure)P.
Up —U,=C,AT - P AV
In the initial state the volume of the gas V is and the temperature is T, while in the final state
b the volume is (V + AV) and the temperature is (T + AT). Pressure P remains constant.
Hence for these state the gas equations are
PV =RT
P(V + AV) =RT(T + AT)
PAV=RAT
U, — U, = CL,AT — RAT
U —U, =0, — U,
CyAT = C,AT — RAT
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C,=C,—R
Cp —C, =R

Case-1 Conversion of graph

Pressure versus temperature (p.T) graph of n moles of an ideal gas. Plot the corresponding.
P
(a) Density verus volume (p-V) graph, 4;:0“ .

(b) Pressure verus volume (p-V) graph and 2P0

(c) Density verus pressure (p-p) graph. o

Pressure A-B is an isothermal process

1.e. T =constant
1
Hence, p « >
Or p-V graph will be a rectangle hyperbola with increasing p and decreasing V.

p X % Hence, p-V graph is also a rectangular hyperbola with decreasing V and hence

increasing p.
M
pxp  |p=t

Hence, p-p graph will be a straight line passing through origin, with increasing p and p.

Process B-C is an isochoric process , because p-T graph is a straight line passing through
origin i.e. V= constant

Hence, p-V graph will be a straight line parallel to p-axis with increasing p.
Since, V = constant hence p will also be constant hence p-V graph will be a dot.

p-p graph will be a straight line parallel to p-axis with increasing p, because
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p = constant

Process C-D is inverse of A-B and D-A is inverse of B-C.

Difterent values of p, V, T and p in tabular form are shown below.

Here, Vy = nR (IZ_Z) and py = %

The corresponding graphs are as follows

AP AP N -
2 llllllll B ’C 2PU llllll
pU 4Pn LA L L ] C :
g D :
Pofsnsnnnss e n AD 2pohennnuns 3 Pope " :D :
g E Pofe=- “';"“ :A E § g
H N > V . H > . . - >
W T, o v Po 2p, 4p
2 2

Case -2 finding efficiency by graph

Two moles of a monatomic ideal gas undergo a cyclic process ABCDA as shown in figure.
BCD is a semicircle. Find the efficiency of the cycle.

Process AB is isochoric (V = constant).

Hence,
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AWAB =0
7
AWgcp = poVy + g (o) (;0)

= G + 1) poVo

1
AWDA = _E (p2_0+ pO) (ZVO - VO)

3
= _ZPOV

3 3
AUpp = nCyAT = (2) <§R) (Tg — Ty) (n =2, C= ER)

\Y \Y
- 3R (po o _Dbo o)
2R nR

3 v
=3 PoVo = AQag (T = E_R)
3
AUgcp = nCyAT = (2) (5 R) (Tp — Tp)

— 2poVo _ PoVo)3
= (3R) ( 2R 2R )4 PoVo

Hence, AQgcp = AUgcp + AWpcp
T 5

= (3+3)po¥o

AUDA = nCVAT

=(2) G R) (Ty — Tp)

- om (-2

9
= 3 PoVo

- AQpa = AUpp + AWpy

9 3
= ZPOVO - ZPOVO

= —3poV

Net work done is,

Waee = (5+1-32) pols
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= 104 pOVO
and heat absorbed is

Qap = AQpe

Case -3 Example of first law

The density (p) verus pressure (p) graph of one mole of an ideal monoatomic gas undergoing
a cyclic process is shown in figure. Molecular mass of gas is M.

(a) Find work done in each process.

(b) Find heat rejected by gas in one complete cycle. 2py -2

(¢) Find the efficiency of the cycle. Density

For Process 1-2 pc p e Pln —
vP

Process is isothermal.

AU] =0
Q, =W, =nRT In (”—)
Py

=2in () (asn = 1andrr = 22)

— _ boM
= ~ In(2)

For process 2-3
Q; = Qp = n CLAT
= (1) GR) (T3 - Tz)

=5 (ﬂ _ @)
2 P3 P2
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= 2.5 oM
Po
AU, = nC,AT

Substituting the values like above we get,

1.5p9M
AU, = —2Po

Po

M
W = Qp — AU, = 2=

Substituting the values like above we get,

1.5p0M
AU, = 2=

Po

M
W3—Q2—AU2=p;’—O

For Process 3-1

Density is constant. Hence,
Volume is constant.

S W3=0

- Q3= AU, =nCyAT
=D (%R) (T, —T3)

2 \ po Po

Po

(b) 2Q_pe = |Q1 + Q3|

=22 (24 m2)

Po

(+PoM/po)+(“E2Mn2)

_ Whnet — Po
(©) n ZQ+ve (2.5p0M/po)
=2 (1-m2)
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Example. A monatomic ideal gas of two moles is taken through a cyclic process starting

. . s \
from A as shown in the figure. The volume ratio are V—B =2 andv—D = 4. If the temperature
A A

Tg at A is 27°C

Vp c
A

v

Vs B
V

i B 7/

O T, >T T,

Calculate
(a) the temperature of the gas at point B,
(b) heat absorbed or released by the gas in each process,
(c) the total work done by the gas during the complete cycle.
Express your answer in terms of the gas constant R. ( Adv. 2001)

Solution:- Given,
Number moles, n =2

Cy = ;R and C, = ZR (monoatomic)
Ty =27°C=300K
Let VA = VO then VB = 2V0
and Vp = Ve = 4V,
(a) Process A—>B

VT
Tg Vg
Ta Va
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Vg
TB = TA (V_A

) = (300)(2) = 600 K
(b) Process A>B
VT
= p = constant

QAB = ndeT = nCp(TB — TA)
= (2) (;R) (600 — 300)

Qag = 1500 R ( absorbed )

Process B > C
T = constant
dUu=0

Ve
QBC = WBC = nRTBln <—)
Vg

= (2)(R)(600)In (%’))

= (1200 R)In (2) = (1200 R)(0.693)
or Qgc = 831.6 R (absorbed)
Process C— D V = constant
Qcp = nCy dT = nCy(Tp — T¢)

3
=n (ER) (TA - TB)
(TD = TA and TC = TB)
3
) (ER) (300 — 600)

Qcp = —900R(released)
Process D> A T = constant
= AU=0

Va
Qpa = Wpa = nRTpln (—)
Vb

= (2)(R)(300)In (4\’—\;’0)

= 600 R1 (1)

Qpa = —831.6 R (released)
(c) In the complete cycleAU = 0
Therefore, from conservation of energy

Whet = Qag + Qec + Qep + Qpa
Wyet = 1500R+831.6 R—900R —831.6 R
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o Whet = Wiora) = 600 R

Example. two moles of an ideal monatomic gas is taken through a cycle ABCA as shown in
the p-T diagram. During the process AB, pressure and temperature of the gas such that pT =
constant. If T; = 300 K, calculate ( Adv. 2000)

P
B C
2p] ------- =
p] llllll l:b (L] A
T, 2T, > 7

(a) the work done on the gas in the process AB and
(b) the heat absorbed or released by the gas in each of the processes.
Give answer in terms of the gas constant R.

Solution:- Number of moles, n = 2, T; = 300K
During the process A — B
pT = constant or p?V = constant = K (say)

p =
Vg Vg \/K

WA—>B = f pdV = —dV
Va Va \/v

= 2VK[y/Vs — /Va]
2[KVp — /KVy]
= 20 |03%a)Vs — | GZVAIVA
= 2[pgVs — paVal
= [nRTg — nRT,] = 2 nR[T, — 2T,]
(2)(2)(R)[300 — 600] = —1200 R.

.. Work done on the gas in the process AB is 1200 R.
Alternation solution

Sl=
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PN
B_C
2p| ------- q
Pilrennes .c;n...- A

1;, Z-T, >

pV = nRT
~ pdV + Vdp = nRdT

or pdv+ (%) .dp = nRdT ..()

From the given condition

pT = constant
pdT+ Tdp =0 ...(10)
From Egs. (i) and (ii), we get

pdV = 2nRdT
Tg
x WA—>B = fpdV = 2nR dT = an(TB - TA)
Ta

= 2nR(T, — 2T,) = (2)(2)(300 — 600)
orWy_p = —1200R

(b) Heat absorbed/released in different processes.
Since, the gas is monatomic.

3 5 5
Therefore, Cy = ER and C, = 3 andy = 3
Process A->B AU = nCyAT

=@ (% R) (Ty = Ta)
=(2) (%R) (300 —600) = —900 R

Qasp = Wy + AU
= (—=1200R) — (900 R)
Qasg = —2100R (released)

Alternation solution

In the process pV* = constant

Molar heat capacity, C = R 4R
y-1 1-x

Here the process is p2V = constant
or pVY?= constant
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ie. x=1
2
. R R
3 2
C=35R
QA_>B=HCAT

= (2)(3.5R)(300 — 600)
or Qag = —2100R

Process B — C Process is isobaric
5
Qa-c = nCpAT = (2) (3R) (T¢ - Ty)

5
= (5R)(600 — 300)
Qgp_c = 1500 R(absorbed)

Process C >A Process is isothermal.
AU=0
= - Pc
and QC—>A = WC—>A = nRTC In (pA)
2
— nR(2T) In (%) — (2)(R)(600)In(2)

1

Qc_a = 831.6 R(absorbed)
NOTE

In first law of thermodynamics, (dQ = dU + dW) we come across three terms
dQ,dU and dW.

dU = nCydT for all the processes whether it is isobaric isochoric or else and dQ = nCdT
where
R R

r—1+1—X

In the process pV'= constant.

In both terms we require dT(= Tf — t;) only. The third term dW is obviously dQ — dU.
Therefore if any process change in temperature (dT) and p-V relation is known, then the
above method is the simplest one. Note that even if we have V-T or T-p relation, it can be
converted into p-V relation by the equation pV = nRT

Example. One mole of an ideal monatomic gas is taken round the cyclic process ABCA as
shown in figure. Calculate ( Adv. 1998)
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P
3py B
Pob A&C
Vo 27, 4

(a) the work done by the gas.
(b) The heat rejected by the gas in the path CA and the heat absorbed by the gas in the path AB.

(c) the net heat absorbed by the gas in the path BC.
(d) the maximum temperature attained by the gas during the cycle.

solution:-ABCA is a clockwise cyclic process.

¥4
3}90' B
A‘; ‘3
Py’ C
Vo 27, 4

~ Work done by the gas
W = +Area of triangle ABC
1 1
=3 (base) (height) = 5 (2Vy — Vo) (3po — Do)

W = p,V,
(b) Number of moles n =1 and gas is monatomic, therefore

(i)Heat rejected in path CA (process is isobaric)
. dQCA = deT = Cp(Tf - Tl)
psVe piVi\ _ GCp
=GCp (T - T) =g (Pr—PiV)
Substituting the values

5 5
dQca = E(Povo —2peVo) = —Epovo

Therefore, heat rejected in the process CA is g PoVo
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(i1) Heat absorbed in path AB (process is isochoric)
- dQap = CydT = Cy(Tr — Th)

—C (pf_Vf_ini)
VIR R

Cy
r (peVe — piVh)

3
5 PV — piVh)

3
= E (BpoVo — PoVo)

dQae = 3poVo
. Heat absorbed in the process AB is 3 pyV,
(c) Let dQpc be the heat absorbed in the process BC
Total heat absorbed,

dQ = dQca +dQap + dQg¢
5
dQ = (~2PoVo) + (3poVo) + dQac

V
dQ = dQpc + Po2 -
Change in internal energy, dU = 0
S dQ = dW
PoV, PoVi
+ Qe+ 5 =poVo + dQpc ="

-~ Heat absorbed in the process BC is pOTVO

(c) Maximum temperature of the gas will be somewhere between B and C. Line BC is a straight
line. Therefore p-V equation for the process BC can be written as
p=-mV+c(y =mx+c)
2po

Here, m == and c = 5p,
Vo

2P
p==(3;)V+50
Multiplying the equation by V,

2Po

pV=—(V—)V2+5p0V (pV =RT forn = 1)
0

orT = % [SpOV - ZVLOOVZ]

. dT
For T to be maximum, i 0
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5V,
= spo—vio"v=0 =>V=T°
Le. at V== —°, (on line BC), temperature of the gas is maximum. From Eq. (i) this

maximum temperature will be

1 5V0 _ 2po (5V0>2
25 PoV,
Tmax - ? (;% >

Example. A sample of 2 kg monoatomic helium (assumed ideal) is taken through the process
ABC and another of 2 kg of the same gas is taken through the process ADC (see fig). ( Adv.
1997)

F4
(x 104 N/'m?)
B C
10 >
» b4
5 <& D
A
10 2 Vaw)

(a) What is the temperature of helium in each of the states A, B, C and D?

(b) Is there any way of telling afterwards which sample of helium went through the process ABC
and which went through the process ADC? Write Yes or NO.

(¢) How much is the heat involved in the process ABC and ADC?

Solution:-number of gram moles of He,

m 2x103
n=—-=

Mo 2 =500
(a)Vy, = 10 m3,P, = 5 X 10*N/m?
paVa _ (10)(5 x 10%)

nR ~ (500)(8.31)

TA=

or Ty =120.34K
Similarly, Vg = 10 m3,Pz = 10 X 10*N/m?
_ (10)(10 x 10%)
B~ (500)(8.31)
o Ty = 240.68 K
Ve = 20 m3, pe = 10 X 10*N/m?
(20)(10 x 10%)
¢~ 7(500)(831)
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Tc =481.36K
and Vp = 20m3,P, = 5 X 10*N/m?
_ (20)(5 x 10%)
~ (500)(8.31)
Tp = 240.68 K
(b) No, it is not possible to tell afterwards which sample went through the process ABC or
ADC . but during the process if we note down the work done in both the processes, then the
process which require more work goes through process ABC.
(c) In the process ABC

Vb

3
AU = nCy AT =n (ER) (Te — Ta)

— (500) (g) (8.31)(481.36 — 120.34)]

AU = 2.25 x 10°]
andAW = Area under BC
= (20 —10)(10) x 10*] = 10°9]
. AQapc = AU + AW = (2.25 x 10° + 10°)]
AQapc = 3.25 % 10°]
In the process ADC AU will be same (because it depends on initial and final temperature
only)
AW = Area under AD
= (20— 10)(5 x 10%)j = 0.5 x 10°]
AQapc = AU + AW = (2.25 x 10° 4+ 0.5 x 10%)] N
AQapc = 2.75 x 10°]
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