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Heat Transfer

Chapter Heat Transfer

Day - 1

Transfer of energy from one place to other place

We know for heat or energy transfer a important factor is change in temperature (AT)
In this case block appears to be more hot as compare to wood block If we feels

Cold — we reject heat

Hot — we receive heat

In this case Iron appears to be more hot as compare to wood block If we feels
Hot — we receive heat
Cold — we reject heat

In winters

In cold countries glass window made of double or triple layers

Also Eskimos made their huts by double or triple layers of ice

Except AT there is one more point called conductivity of heat
Mods of heat transfer

|Thermalionduction | Con\lection | Racﬁition

Mainly occurs in solids Mainly occurs in liquids or |Transfer of heat or energy

Material or medium gasses material or even without existence of
|particle do not move, only medium particles move to |medium so here no need
‘energy transport from one convey to energy. to medium fastest mode
|place to other of H.T. Transfer energy for

very high temperature
source like Sun.
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Thermal conduction
Slowest mode of heat transfer.

CONVECTION
In liquids

In gasses

Radiation
Transfer of heat or energy even without existence of medium. So here no need of medium

Fastest mode of heat transfer

Transfer energy for very high
temperature sources also very far
like sun

Thermal conduction
In steady state

aQ

E—H

Rate of transfer of heat or heat current
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dQ
a aA
—dT
dx
dQ dT
—=—-KA —
dt dx
T
Here Ix Temperature gradient negative always because
dT 7T, dx 1
dT |, dx T
and K is coefficient of thermal conductivity
K= 290 to 320
Kg.— 80 to 150
Kwood—> 0.7
Kair_) 0.005
Here air is very bad conductor of heat
Thermal resistance
l
R=%a
IfH = dQ = KA AT
Todt !

Combinations of slabs

Series Combinations

Heat current through slab 1
dQ K, A(Ty — T¢)
- = Hl e
dt d

Heat T, is junction temperature
dQ K,A(T, — T,)
—=H,=——=
dt d

In series Heat current must be same

K1A(T1 B TC) _ KZA(TC B Tz)

H1=H2$

d d
Ki T - KT, =K, T, - K; T,
Junction Temperature T, = K, K,
KA KiT; + K, T
H, = L(Tl _KL + K z)
d K; + K,
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KA KTy + KTy — K, Ty — K, T,
1774 ( K, +K, )
KA /KT, — K, T,

1774 ( K, + K, )
KK,A (T, =T,
d (K1 n Kz)

Equivalent Conductivity of heat
 KegA(T, = Ty)

K 2d
182
T
H= H1
2K, K,
4K, + K,
(II) Parallel combination
Heat current through slab 1
_dQ;  K4A(T, —Ty)
Todt d
dQ, KA(T; —Ty)
H, = =
dt d

KquA(Tl - Tz) _ KlA(Tl - Tz) + KZA(TI - Tz)
d B d d

K, + K,
(Keq -~ 2 )

Interaction of radiation with matter
When thermal radiations (Q) fall on a body, they are partly reflected, partly absorbed and

partly transmitted.
(DQ=Qa+Qr +Q \
Qa , Qr , Q¢ N Q
2) =+—+—=a+r+t=1 < "
Q7" R
Q | Q
(3) a= Q = Absorptance or absorbing power a
Q
r= & = Reflectance or reflecting power :
Q
t= % = Transmittance or transmitting power
(4) r, a and t all are the pure ratios so they have no unit and dimension.
(5) Different bodies
Page 59
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(i) Ifa =t=0and r=1 — body is perfect reflector

(1)) Ifr=t=0and a=1 — body is perfectly black body

(i) Ifa=r=0and t =1 — body is perfect transmitter
(iv)Ift=0=r+a=1ora=1-r, ie, good reflectors are bad absorbers.

Emissive power, absorptive power and emissivity
If temperature of a body is more than it’s surrounding then body emits thermal radiation.
(1) Monochromatic Emittance or Spectral emissive power (e;) : For a given surface it is
defined as the radiant energy emitted per sec per unit area of the surface with in a unit
wavelength around 2, i.e., lying between (A - %) to (/1 + %)

Energy

Spectral emissive power (e;) =
P P (e2) Area X time X wavelength

) Joule ) ) 1
Units: ——— and Dimension: [ML™1T 3]
m2 x s X &
(2) Total emittance or total emissive power (e) : It is defined as the total amount of
thermal energy emitted per unit time, per unit area of the body for all possible wavelengths.
e= [ edi
] Joule  Watt ] ] 5
Unit: or and Dimension: [MT 3]
m?XxXs  m?
(3) Monochromatic absorptance or spectral absorptive power (a,) : It is defined as the
ratio of the amount of the energy absorbed in a certain time to the total heat energy incident

upon it in the same time, both in the unit wavelength interval. It is dimensionless and unit

less quantity. It is represented by a;.
(4) Total absorptance or total absorpting power (a) : It is defined as the total amount of
thermal energy absorbed per unit time, per unit area of the body for all possible wavelengths.

a =j adi
0

(5) Emissivity (¢) : Emissivity of a body at a given temperature is defined as the ratio of the

total emissive power of the body (e) to the total emissive power of a perfect black body (E) at

the temperature, i.e., € = g (e = read as epsilon)

(1) For perfectly black body € =1

(i1) For highly polished body € = 0

(ii1) But for practical bodies emissivity (¢) lies between zero and one ( 0<e< 1).

Perfectly Black Body

(1) A perfectly black body is that which absorbs completely the radiations of all wavelengths
incident on it .
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(2) As a perfectly black body neither reflects nor transmits any radiation, therefore the
absorptance of a perfectly black body is unity, i.e.,t=0andr=0=a=1.

(3) We know that the colour of an opaque body is the colour (wavelength) of radiation
reflected by it. As a black body reflects no wavelength so, it appears black, whatever be
thecolour of radiations incident on it.

(4) When perfectly black body is heated to a suitable high temperature, it emits radiation of
all possible wavelengths. For example, temperature of the sun is very high (6000 K approx.)
it emits all possible radiation so it is an example of black body.

Kirchhoff’s law

According to this law the ratio of emissive power to absorptive power is same for all surfaces

at the same temperature and is equal to the emissive power of a perfectly black body at that
E
temperature.Hence A% .. ( )
a Az A/ perfectly black body

But for perfectly black body A =1, i.e.,% =F

If emissive and absorptive powers are considered for a particular wavelength A,

(e_/l) = (El)black

a
Now since (E; )plackis constant at a given temperature, according to this law if a surface is a
good absorber of a particular wavelength it is also a good emitter of that wavelength.
This in turn implies that a good absorber is a good emitter (or radiator)

Stefan’s law
According to it radiant energy emitted by a perfectly black body per unit area per sec (i.e.,
emissive power of black body) is directly proportional to the fourth power of its absolute
temperature , i.e., E oc T'= E=oT*
Whereois a constant called Stefan’s constant having dimension [MT>0*] and value 5.67 x
10° W/ m°K*.
(i) For ordinary body: e = ¢E = eoT*
(i1) Radiant energy: If Q is the total energy radiated by the ordinary body than

e :Aixt: eoT* = Q = AeoT*t
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(ii1) Radiant power (P) : It is defined as energy radiated per unit area, i.c.,
P= % = AeoT*.

(iv) If an ordinary body at temperature T is surrounded by a body at temperature T, then
Stefan’s law may be put as e = €0 (T* — T)

Rate of loss of heat (r,) and rate of cooling (r.)
(1) Rate of loss of heat (or initial rate of loss of heat): In an ordinary body at temperature T
is placed in an environment of temperature T ( To< T) then heat loss by radiation is given by

AQ = Qemission — Qabsorption = Aeo(T* — T(;L)t
d
(2) Rate of loss of heat (Ry) = d_? = Aeo(T* — TF)

(i) If two bodies are made of same material, have same surface finish and are at the

daQ
o d at A
same initial temperature then d—? X A= E ;‘égl = A_1
=7 2
dt/,

(3) Initial rate of fall in temperature (Rate of cooling): If m is the body and c is the

specific heat then
dQ dT de

i mc. g mca (* Q = mcAT and dT = d6)
do (dQ/dt)  Aeo
R f | R = T4 — T
(i) Rate of cooling (R¢) = T me — ( o)
Aco 4 4 .
= Voc (T* — Ty); where m = density (p) X volume(V)

(i1) for two bodies of the same material under identical environments , the ratio of their rate
RIL _ 41 ¥

of cooling is —— .
& (R)2 A'»y

Newton ‘s law cooling
When the temperature difference between the body and its surrounding is not very large

i.e.T — T, = AT then T* — Ty may be approximated as 4T§AT
dT Aeo

B f. | — = — [T*-T%
y Stefan’slaw, it — [T o]
H ar _ A£G4T3AT=> TocAT do x0—0
NG T e O dt RS 0

e. , if the temperature of body is not very different from surrounding, rate of cooling is
proportional to temperature difference between the body and its surrounding. This law is
called Newton’s law of cooling.

(1) Greater the temperature difference between body and its surrounding greater will be the
rate of cooling.
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(2) If 6 = 6,, % =0 i.e. a body can never be cooled to a temperature lesser than its
surrounding by radiation.
(3) If a body cools by radiation from 6;C to 6,C in time t, then

a6 _ 6,-6 01+ , : 6,6

== ITZ and 6,, = =—=2. The Newton’s law of cooling becomes [ 1t 2] =
0,40

K [ 12 2 90].

This form of law helps in solving numericals.

Wien’s displacement law
According to Wien’s law the product of wavelength corresponding to maximum intensity of
radiation and temperature of body (in Kelvin) is constant, i.e. A,,T = b = constant
where b is Wien’s constant and has value 2.89 x 10° m-K. As the temperature of the body
increases, the wavelength at which the spectral intensity (E;) is maximum shifts towards left.
Therefore it is also called Wien’s displacement law.

At & 4 A,
‘&mz 7\.,
This law is of great importance in ‘Astrophysics’ as through the analysis of radiations

coming from a distant star, by finding A, the temperature of the star T ( = b / Ay) is
determined.
Temperature of the Sun and Solar Constant
If R is the radius of the sun and T its temperature, then the energy emitted by the sun per sec
through radiation in accordance with Stefan’s law will be given by

P = AoT* = 4nR?cT*
In reaching earth this energy will spread over a sphere of radius r ( = average distance
between sun and earth); so the intensity of solar radiation at the surface of earth (called solar
constant S) will be given by

P 4mR*0T*

4mr? 4mr?

e T= [(%)2 5]1/4

_ [(1.5 x 108>2 1.4 x 10

S

X
7 X 105 5.67 X 10-8
As r=1.5x10* km, R=7x 10° km,

1
] =~ 5800 K
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S=2 = —14—and0—567><10 -8

cmzmnl ZK4
This result is in good agreement with the experimental value of temperature of sun, i.e., 6000
K.

Case 1 Growth of ice on ponds

dQ_L dm
dt ~ T dt

AT _ o d
7—UﬁMW)

o—(-T
Y/I(A =Lf Ap

t L
fodt=% S ydy

t=__ y Indep. of area of pond

If thickness is increased from Y; to Y, then
PL _pL 2

b= [Pydy pas 03 —yD)

ty;ty; ts.. = 12%;2%;32

Aty; Aty; Ats...=1;3;5

Case 2 Radial heat flow
Therml resistance R = —
KA

dr
K4mr?

dR =

Rip =1 (?,—2
JydR=—— [, 72 dr

=i (-3
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dR = AT
dt =~ R
— (T1—Tp)(4mk)
G-3)
(T, — T,)(ab) (4rk)

H= b—a

Case-3 Steam passing cylindrical pipe

l dr
= — = =
R KA de kaﬂ:r
1 b dr
T 2nk Ya r
1 b
R=— In-
2tk a
d AT T,—Ty)2mk
_Q — H — — ( 1 2)

Tt

Case : 4 and Case 5

1. Cooling by conduction or radiation

(1) By conduction A body P of mass m and specific heat C is connected to a large body Q (of
specific heat infinite) through a rod of length 1, thermal conductivity K and area of cross-
section A. Temperature of Q is 0 (< 0;). This temperature will remain constant as its specific
heat is very high. Heat will flow P to Q through the rod. If we neglect the loss of heat due to
radiation then due to this heat transfer, temperature of P will decrease but temperature of Q
will remain almost constant. At time t, suppose temperature of P becomes 6 then due to
temperature difference heat transfer through the rod.

d D 6-6 )
B_pg="=2 (D)
dt R R

I
Here, R=—

KA

Now, if we apply equation of calorimetry in P, then

Q = mc(—AB)or % =mc (—%) . (1)

Equating Egs. (i) and (i), we have

a9 TD  6-6, ,
—— = —=——= Rate of coolin .. (il
dt mcR mcR f g ( )

So , this is the rate of cooling by conduction.
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do ;
or ———« TD .. (iv)

Cooling by Radiation

Consider a hot body at temperature T placed in an environment at a lower temperature Ty.
The body emits more radiation than it absorbs and cools down while the surroundings absorb
radiation from the body and warm up. The body is losing energy by emitting radiations at a
rate

P = eAcT*
and 1s receiving energy by absorbing radiations at a rate
P, = aAoTy

Here, ‘a’ is a pure number between 0 and 1 indicating the relative ability of the surface to
absorb radiation from its surroundings. Note that this ‘a’ is different from the absorptive
power ‘a’. In thermal equilibrium, both the body and the surroundings have the same
temperature (say T.) and,

P, =P, or eAcT} =adoTtor e=a
Thus , when T > Ty, the net rate of heat transfer from the body to the surroundings is

dQ ar
— = eAa(T* = Tg) or me (_E) =eAo(T* -T2}

Rate of cooling
(—d—T) =T —TE) or —% o« (T*—Tg)

dt mc

Newton’s Law of Cooling

According to this law, if the temperature T of the body is not very different from that of the
surrounding Ty, then rate of cooling — % is proportional to the temperature difference
between them. To prove it, let us assume that

T =Ty+AT
4
Sothat T*=(Ty +AT)* =T¢ (1+)
To
~ Ty (1 + 4TA—T) (from binomial expansion)
0

o (TH = TE) = 4T3 (AT)
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or (T*—Tg) < AT (as T, = constant)

Now , we have already shown that rate of cooling

(-5)=arr
and here we have shown that

(T* =T < AT

If the temperature difference is small.

Thus, rate of cooling

ar
dat

as dT=d0or AT=A0

< AT or — % « pg
dt

Variation of Temperature of a Body According to Newton’s Law

suppose a body has a temperature 0; at time t = 0. It is placed in an atmosphere whose
temperature is 0p. We are interested in finding the temperature of the body at time t.
Assuming Newton’s law of cooling to hold good or by assuming that the temperature
difference is small. As per this law,

Rate of cooling oc temperature difference

), = constant 6, = constant
_40) _ (e4c 3) (9 —
or ( dt) - (mc) (490) (9 90)
de
or (_E) =a (-0,
=0 t=t
03 .
Here, 0 = (46‘:6 0) (is a constant)
6 de t
fei s = ¢ fo dt

6= 90 + (91 - Ho)e_at
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From this expression we see that 6 = 6; at t = 0 and 6 = 6, at t = oo, i.e. temperature of the

body varies exponentially with time from 6; to 0y (< ;). P

S

{;U SEssEsEsEREES

The temperature versus time graph

> [

Example:-. A cylindrical block of length 0.4 m and area of cross —section 0.04 m” is placed
coaxially on a thin metal disc of mass 0.4 kg and of the same cross —section. The upper face
of the cylinder is maintained at a constant temperature of 400 K and the initial temperature of
the disc is 300 K. if the thermal conductivity of the material of the cylinder is 10 W/mK and
the specific heat capacity of the material of the disc is 600 J/kg —K, how long will it take for
the temperature of the disc to increase to 350 K? Assume, for purposes of calculation, the
thermal conductivity of the disc to be very high and the system to be thermally insulated
except for the upper face of the cylinder. ( Adv. 1992)

Solution: Let at any time temperature of the disc be 6.
At this moment rate of heat flow.

dQ _ KA(AB) _ KA .
E= 1 =T(60—6) (1)
This heat is utilized in increasing the temperature of the disc.
Hence,
dQ _ _de ..
T = ms o .. (1)
Equating Egs. (i) and (ii), we have
dée KA
mSa = T (60 - 6)
de KA
Therefore, 8=0 — msl dt A 20
350K 4 KA [t o | dt
or f = —f dt = M
300k 90— 0 msl/, S
KA ~| ¥
—In(8, — 0)]339K = —+¢
or [—In(6 )]500K msl v
msl 6, — 300
o om0
KA 0, — 350

Substituting the values, we have
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_ (0.4)(600)(0.4) (400 — 300
T T o004 (400 _ 350)
T=16632s

Example:-. A solid sphere of copper of radius R and a hollow sphere the same material of
inner radius r and outer radius R are heated to the same temperature and allowed to cool in
the same environment. Which of them starts cooling faster?

. . (d . .
Solution: Net rate of heat radiation (d—?) will be same in both the cases, as temperature and

area are same.
Therefore, from equation

( dG)_dQ deocl
S NPT T T,

The hollow sphere will cool faster as its mass is less.

Example:-. A room is maintained at 20°C by a heater of resistance 20Q2 connected to 200 V
mains. The temperature is uniform throughout the room and the heat is transmitted through a
glass window of area 1m” and thickness 0.2 cm. Calculate the temperature outside. Thermal
conductivity of glass is 0.2 cal m™” s (°C)™" and mechanical equivalent of heat is 4.2 J cal”

Solution: Power produced by heater = rate of heat flow through window
. V2 _ Temperature difference 20 —6
" R Thermalresistance (I /KA)

) 9=20—m

Substituting the value we have
_ (200)2(0.2x1072)

— o
6=20 (0.2%4.2)(1)(20) 15.24°C

Day 2 and Day 3 Main & Advance Level Problem

Please watch videos for the questions and also practice online assignments
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