

Chapter

Calorimetry

Day - 1

Amount of heat given or taken

If temperature is changing but state (Solid, liquid, gas) remains unchanged $Q = ms\Delta T$ Here,

Q is amount of heat

m is mass of substance

 ΔT is change in temperature

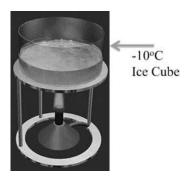
And s is specific heat

Q = mL

If temperature is not changing but state (Solid, liquid, gas) must be change

Here,

m is mass

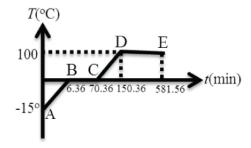

Some standard values

S for water = 1 if m is in gram

S for ice = 0.5 if m is in gram

L for ice =
$$78$$
 ≈ 80 if m is in gram
L for steam = 536 ≈ 540 if m is in gram

CALORIMETRY



THERMAL PHYSICS Page 16

How much heat is required to convert 8 gm of ice at − 15 °C to steam at 100 °C if heat is supplied at a constant rate of q =10 cal/min then plot temperature versus time graph .(Given $c_{ice} = 0.53$ cal/g ^{o}C , $L_{f} = 80$ cal/ gm , and $L_{v} = 539$ cal/gm and $c_{water} = 1$ cal/gm $^{\rm o}C$

Solution:

From A to B

temperature of ice will increase from -15°C to 0°C **(i)**

(ii)
$$t_{AB} = \frac{\text{Total heat required}}{\text{Heat supplied per minute}} = \frac{Q_1}{q}$$
$$= \frac{63.6}{10} = 6.36 \text{ min}$$

- (iii) Between A and B we will get only ice. From B to C
- Temperature of (ice + water) mixture will remain constant at 0° C. (i)

(ii)
$$t_{BC} = \frac{Q_2}{q} = \frac{640}{10} = 64 \text{ min}$$

$$\therefore \ t_{Total} = t_{AB} + t_{BC} = 70.36 \ min$$

From C to D

Temperature of water increase from 0°C to 100°C (i)

(ii)
$$t_{CD} = \frac{Q_3}{q} = \frac{800}{10} = 80 \text{ min}$$

$$\therefore \ t_{Total} = t_{AB} + t_{BC} + t_{CD} = 150.36 \ min$$

- (iii) Between C and D we will get only water.
 - From D to E

(i) Temperature of (water + steam) mixture will remain constant at
$$100^{\circ}$$
C.
(ii) $t_{DE} = \frac{Q_4}{q} = \frac{4312}{10} = 431.2 \text{ min}$

$$\therefore t_{Total} = t_{AB} + t_{BC} + t_{CD} + t_{DE} = 581.56 \text{ min}$$

(iii) Between D and A we will get both water and steam.

The corresponding graph is as shown is as shown in Fig. given above.

Example:- The temperature of equal masses of three different liquids A, B and C are 12°C, 19°C and 28°C respectively. The temperature when A and B are mixed is 16°C and when B and c are mixed it is 23°C. what should be the temperature when A and C are mixed?

Solution: Let m be the mass of each liquid and S_A, S_B, S_C specific heats of liquids A, B, and C respectively. When A and B are mixed. The final temperature is 16°C.

∴ Heat gained by A = Heat lost by B
i.e.,
$$ms_A(16-12) = ms_B(19-16)$$

i.e., $s_B = \frac{4}{3}s_A$

When B and C are mixed.

Heat gained by B = Heat lost by C

i.e.,
$$ms_B(23-19) = ms_C(28-23)$$

From Eqs. (i) and (iii),
$$S_C = \frac{4}{5} \times \frac{4}{3} S_A = \frac{16}{15} S_A$$

When A and C are mixed, left the final temperature be θ

Heat gained by A = Heat lost by C

$$ms_A(\theta - 12) = ms_C(28 - \theta)$$

i.e., $\theta - 12 = \frac{16}{15}(28 - \theta)$

By solving, we get

$$\theta = \frac{628}{31} = 20.26$$
 °C

Example:- In an insulated vessel, 0.05 kg steam at 373 K and 0.45 kg of ice at 253 K are mixed. Find the final temperature of the mixture (in kelvin). (JEE Adv. 2006)

Given, ,
$$L_{fusion}=80\frac{cal}{g}=336$$
 J/g
$$L_{vaporization}=540cal\ /g=2268$$
J/g
$$s_{ice}=2100\frac{J}{kg}-K=0.5\ cal/g-K$$
 and
$$s_{water}=4200\frac{J}{kg}-K=1\frac{Cal}{g}-K$$

Solution: 0.05 kg steam at 373 K $\stackrel{Q_1}{\rightarrow}$ 0.05 kg water at 373 K

$$0.05$$
 kg water at 373 K $\stackrel{Q_2}{\rightarrow}$ 0.05 kg water at 273 K 0.45 Kg ice at 253 k $\stackrel{Q_3}{\rightarrow}$ 0.45 kg ice at 273 K 0.45 kg ice at 273 K $\stackrel{Q_4}{\rightarrow}$ 0.45 kg water at 273 K $Q_1 = (50)(540) = 27,000$ cal = 27 k cal. $Q_2 = (50)(1)(100) = 5000$ cal = 5 k cal

$$Q_3 = (450)(0.5)(20) = 4500 \text{ cal} = 4.5 \text{ k cal}$$

 $Q_4 = (450)(80) = 36000 \text{ cal} = 36 \text{ k cal}$

Now, since $Q_1 + Q_2 > Q_3$ but $Q_1 < Q_2 < Q_3 + Q_4$ ice will come to 273 K from 253 K, but whole ice will not melt. Therefore, temperature of the mixture is 273 K.

Ex. 22.7. An ice cube of mass 0.1 kg at 0°C is placed in an isolated container which is at 227°C . The specific heat s of the container varies with temperature T according to the empirical relation s = A + BT, where A = 100 cal/kg-K and $B = 2 \times 10^{-2} \text{ cal/kg-K}^2$. If the final temperature of the container is 27°C , determine the mass of the container. (JEE Adv. 2001)

(Latent heat of fusion for water = 8×10^4 cal/kg, specific heat of water = 10^3 cal/kg -K)

Solution: Let m be the mass of the container.

Initial temperature of container,

$$T_i = (227 + 273) = 500 \text{ K}$$

And final temperature of container,

$$T_f = (27 + 273) = 300 \text{ K}$$

Now, heat gained by the ice cube = heat lost by the container

$$\therefore \quad (0.1)(8 \times 10^4) + (0.1)(10^3)(27) = -m \int_{500}^{300} (A + BT) dT$$
or
$$10700 = -m \left[AT + \frac{BT^2}{2} \right]_{500}^{300}$$

After substituting the values of A and B and the proper limits, we get

$$m = 0.495 \text{ kg}$$

Day 2 and Day 3 Main & Advance Questions

Please watch videos for the questions and also practice online assignments

THERMAL PHYSICS Page 19