Chapter 5	Projectile Motion

1-D MOTION

2-D MOTION OR MOTION IN A PLANE \Rightarrow

Motion of any object in any of two axis involve (xy or yz or zx)
"Projectile Motion may be 2-D or even 3-D also but in general it is use to be 2-D Motion"

3-D PROJECTILE MOTION

VERTICAL MIRROR

Projectile Motion

Vertical Mirror \rightarrow Gravity acts in vertical direction so we can use equations of motion
Time taken by the image of ball going up $=$ time taken going down $=t$ (Let)
Use $v=u-g t$
$\mathrm{O}=\mathrm{u} \sin \theta-\mathrm{gt}$
Total time
$\mathrm{t}=\frac{\mathrm{usin} \theta}{\mathrm{g}}$, One sided time up or down
$\mathrm{T}=2 \mathrm{t}=\frac{2 \mathrm{usin} \theta}{\mathrm{g}} \Rightarrow$ Time of flight
Now to get Maximum height
Using $v^{2}=\mathrm{u}^{2}-2 \mathrm{gh}$
$(\mathrm{O})^{2}=(\mathrm{usin} \theta)^{2}-2 \mathrm{~g} \mathrm{H}$
$H=\frac{u^{2} \sin ^{2} \theta}{2 g} \Rightarrow$ Maximum height

HORIZONTAL MIRROR

Velocity remains constant so we can not use equation of Motion
Note: Untill any external reason present to change ucosθ, like air flow ucos θ remains Constant Now ucos $\theta=$ Const $t=\frac{u \sin \theta}{g}$, one sided time up o
$\mathrm{R}=(\mathrm{u} \cos \theta) \mathrm{T}$
$\frac{u \sin \theta}{g} \Rightarrow$ Time of flight

Now $\operatorname{Sin} 2 \theta=2 \sin \theta \operatorname{Cos} \theta$
$\mathrm{T}=2 \mathrm{t}=\frac{2 u \sin \theta}{g} \Rightarrow$ Time of flight
Now we have
$\mathrm{H}=\frac{u^{2} \sin ^{2} \theta}{2 g} \Rightarrow$ Maximum hight
So $R=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} \Rightarrow$ Range

1. $\mathrm{T}=\frac{2 \mathrm{usin} \theta}{\mathrm{g}}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}$
2. $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\frac{\mathrm{u}_{\mathrm{y}}^{2}}{2 \mathrm{~g}}$
3. $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{2 \mathrm{~g}}=\frac{\mathrm{u}_{\mathrm{y}}^{2}}{2 \mathrm{~g}}$

CONDITION

"These three results only when can be use if initial point of projection and final point of projection are at same level.

Example: A body of mass m is projected upward with initial velocity $u \cos \theta=\frac{R}{T}$ then find time of flight, Maximum height attained and range attained by the body ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

Solution

$\mathrm{R}=(\mathrm{u} \cos \theta) \frac{(2 \mathrm{u} \sin \theta)}{\mathrm{g}} \mathrm{m} / \mathrm{s}$
$\mathrm{u}_{\mathrm{x}}=4 \mathrm{~m} / \mathrm{s}$
$u_{y}=5 \mathrm{~m} / \mathrm{s}$
So $\mathrm{R}=u^{2} \sin =\frac{2 \times 5}{10}=1 \mathrm{sec}$
$\mathrm{H}=\frac{\mathrm{u}_{\mathrm{y}}^{2}}{2 \mathrm{~g}}=\frac{(5)^{2}}{2 \times 10}=\frac{25}{20}=1.25$ meter
2. $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\frac{\mathrm{u}_{y}^{2}}{2 \mathrm{~g}} \mathrm{u} \sin \theta=2$

Maximum range: To get maximum horizontal distance covered by any mass in projectile motion we must have a unique specified angle.

$R=\frac{u^{2} \sin 2 \theta}{\mathrm{~g}}$, Now for $\mathrm{R}_{\text {max }} \rightarrow(\operatorname{Sin} 2 \theta)_{\text {max }}$
$(\operatorname{Sin} 2 \theta)_{\text {max }}=1$
$2 \theta=90^{\circ}$
$\theta=45^{\circ}$
To get maximum range angle of projection should be $45^{\circ}, \mathrm{R}_{\max }=\frac{\mathrm{u}^{2}}{\mathrm{~g}}$
In this case maximum height $=\frac{\mathrm{u}^{2} \sin ^{2} 45}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2}}{4 \mathrm{~g}}$

Note: Here we are neglecting the effect of air resistance. If we Consider air resistance then this angle θ should be little bit less than 45°

SAME RANGE

Mathematically there must be two different angle of projection for which we will get same range
Ball 1
Now T $=\frac{2 u_{y}}{g}=\frac{2 \times 5}{10}=1 \mathrm{sec}$
Ball 2
$=\frac{2 \times 5}{10}=1 \mathrm{sec}$
Now if we assume

$$
\alpha+\beta=90^{\circ}
$$

then $\beta=90^{\circ}-\alpha$
$\overrightarrow{\mathrm{u}}=(4 \hat{\imath}+5 \hat{\jmath})$
$\mathrm{R}=\frac{2 \mathrm{uxu}_{\mathrm{y}}}{\mathrm{g}}=\frac{2 \times 4 \times 5}{10}=4$ meter
$\mathrm{R}=\frac{2 \mathrm{u}_{\mathrm{x}} 2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}$
If sum of angle of projection is $=90^{\circ}$ and initial speed is same then both balls will have same range.
Note: Here in this Case only range will be same not time of flight and maximum height
$\mathrm{R}_{1}=\mathrm{R}_{2}$
$\mathrm{T}_{1} \neq \mathrm{T}_{2}$
$\mathrm{H}_{1} \neq \mathrm{H}_{2}$
In case of same range relation of time of flights
Here we know $\alpha+\beta=90^{\circ}$
Ball 1
$\mathrm{T}_{1}=\frac{2 \mathrm{uSin} \alpha}{\mathrm{g}}$
Ball 2
$\mathrm{T}_{2}=\frac{2 \mathrm{uSin} \beta}{\mathrm{g}}$ but $\beta=90-\alpha$

$=\frac{2 \mathrm{uSin}(90-\alpha)}{\mathrm{g}}$
$=\frac{2 \mathrm{uCos} \alpha}{\mathrm{g}}$
Now
$\mathrm{T}_{1} \times \mathrm{T}_{2}=\frac{2 \mathrm{uSina}}{\mathrm{g}} \times \frac{2 \mathrm{uCos} \alpha}{\mathrm{g}}$
$\operatorname{Sin} 2 \alpha=2 \operatorname{Sin} \alpha \operatorname{Cos} \alpha$
$\mathrm{T}_{1} \times \mathrm{T}_{2}=\frac{2}{\mathrm{~g}} \frac{\mathrm{u}^{2} \operatorname{Sin} 2 \alpha}{\mathrm{~g}}$
$\mathrm{T}_{1} \times \mathrm{T}_{2}=\frac{2}{\mathrm{~g}} \mathrm{R}_{\text {same }}$
In case of same range relation of maximum heights
Here again $\alpha+\beta=90^{\circ}$
Ball 1
$\mathrm{H}_{1}=\frac{\mathrm{u}^{2} \sin ^{2} \alpha}{2 \mathrm{~g}}$
Ball 2
$\mathrm{H}_{2}=\frac{\mathrm{u}^{2} \sin ^{2} \beta}{2 \mathrm{~g}}, \beta=(90-\alpha)$
$=\frac{\mathrm{u}^{2} \sin ^{2}(90-\alpha)}{2 \mathrm{~g}}$
$=\frac{\mathrm{u}^{2} \cos ^{2} \alpha}{2 \mathrm{~g}}$
$\mathrm{H}_{1} \times \mathrm{H}_{2}=\frac{\mathrm{u}^{2} \operatorname{Sin}^{2} \alpha}{2 \mathrm{~g}} \times \frac{\mathrm{u}^{2} \operatorname{Cos}^{2} \alpha}{2 \mathrm{~g}}$

$=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \times \frac{4 \mathrm{u}^{2} \operatorname{Sin}^{2} \alpha \operatorname{Cos}^{2} \alpha}{2 \mathrm{~g} \times 4}$
$=\left(\frac{\mathrm{u}^{2} \operatorname{Sin} 2 \alpha}{\mathrm{~g}}\right)^{2} \times \frac{1}{16}$
$\mathrm{H}_{1} \times \mathrm{H}_{2}=\frac{\mathrm{R}^{2}}{16}$
$\mathrm{R}=4 \sqrt{\mathrm{H}_{1} \mathrm{H}_{2}}$

