Projectile Motion

Dav - 1

1-D MOTION

2-D MOTION OR MOTION IN A PLANE \Rightarrow

Motion of any object in any of two axis involve (xy or yz or zx) "Projectile Motion may be 2-D or even 3-D also but in general it is use to be 2-D Motion"

3-D PROJECTILE MOTION

Projectile Motion

Vertical Mirror \rightarrow Gravity acts in vertical direction so we can use equations of motion Time taken by the image of ball going up = time taken going down = t (Let) Use v = u - g t $O = u \sin\theta - g t$ Total time t = $\frac{\text{usin}\theta}{\text{g}}$, One sided time up or down T = 2t = $\frac{2\text{usin}\theta}{\text{g}}$ \Rightarrow Time of flight Now to get Maximum height Using $v^2 = u^2 - 2g h$ $(O)^{2} = (usin\theta)^{2} - 2g H$ $H = \frac{u^{2} sin^{2} \theta}{2g} \Rightarrow Maximum height$

ENLIGHTNING YOUR FUTURE

HORIZONTAL MIRROR

Velocity remains constant so we can not use equation of Motion

Note: Untill any external reason present to change $u\cos\theta$, like air flow $u\cos\theta$ remains Constant Now $ucos\theta = Const$

$$t = \frac{u \sin \theta}{g}, \text{ one sided time up o}$$

$$R = (u \cos \theta) T$$

$$\frac{u \sin \theta}{g} \Rightarrow \text{ Time of flight}$$
Now Sin2 $\theta = 2 \sin \theta \cos \theta$

$$T = 2t = \frac{2 u \sin \theta}{g} \Rightarrow \text{ Time of flight}$$
Now we have
$$H = \frac{u^2 \sin^2 \theta}{2g} \Rightarrow \text{ Maximum hight}$$
So $R = \frac{u^2 \sin 2\theta}{g} \Rightarrow \text{ Range}$

$$1. T = \frac{2 u \sin \theta}{g} = \frac{2 u_y}{g}$$

$$2. H = \frac{u^2 \sin^2 \theta}{2g} = \frac{u_y^2}{2g}$$

$$3. R = \frac{u^2 \sin 2\theta}{2g} = \frac{u_y^2}{2g}$$

CONDITION

"These three results only when can be use if initial point of projection and final point of projection are at same level.

Example: A body of mass m is projected upward with initial velocity $u \cos \theta = \frac{\kappa}{T}$ then find time of flight, Maximum height attained and range attained by the body (g = 10m/s²) **Solution**

Maximum range: To get maximum horizontal distance covered by any mass in projectile motion we must have a unique specified angle.

Note: Here we are neglecting the effect of air resistance. If we Consider air resistance then this angle θ should be little bit less than 45°

SAME RANGE

Mathematically there must be two different angle of projection for which we will get same range

Ball 1 Now T = $\frac{2u_y}{a} = \frac{2\times 5}{10} = 1$ sec Ball 2 $=\frac{2\times 5}{10}=1$ sec Now if we assume $\alpha + \beta = 90^{\circ}$ then $\beta = 90^{\circ} - \alpha$ $\vec{u} = (4\hat{i} + 5\hat{j})$ $R = \frac{2ux u_y}{g} = \frac{2 \times 4 \times 5}{10} = 4 \text{ meter}$ $R = \frac{2u_x^2 u_y}{2u_x^2}$ If sum of angle of projection is = 90° and initial speed is same then both balls will have same range. Note: Here in this Case only range will be same not time of flight and maximum height $R_1 = R_2$ $T_1 \neq T_2$ $H_1 \neq H_2$ In case of same range relation of time of flights Here we know $\alpha + \beta = 90^{\circ}$ Ball 1 $T_1 = \frac{2uSin\alpha}{\sigma}$ g Ball 2 $T_2 = \frac{2u Sin\beta}{g} but \ \beta = 90 - \alpha$ $=\frac{2u\mathrm{Sin}(90-\alpha)}{2}$ $=\frac{2u\cos\alpha}{2}$ g Now $T_1 \times T_2 = \frac{2uSina}{g} \times \frac{2uCos\alpha}{g}$ $Sin2\alpha = 2Sin\alpha Cos\alpha$

Projectile Motion

 $T_{1} \times T_{2} = \frac{2}{g} \frac{u^{2} \operatorname{Sin2\alpha}}{g}$ $T_{1} \times T_{2} = \frac{2}{g} R_{\text{same}}$ In case of same range relation of maximum heights Here again $\alpha + \beta = 90^{\circ}$ Ball 1 $H_{1} = \frac{u^{2} \sin^{2} \alpha}{2g}$ Ball 2 $H_{2} = \frac{u^{2} \sin^{2} \beta}{2g}, \beta = (90 - \alpha)$ $= \frac{u^{2} \sin^{2}(90 - \alpha)}{2g}$ $= \frac{u^{2} \cos^{2} \alpha}{2g}$ $H_{1} \times H_{2} = \frac{u^{2} \sin^{2} \alpha}{2g} \times \frac{u^{2} \cos^{2} \alpha}{2g}$ $= \frac{u^{2}}{2g} \times \frac{4u^{2} \sin^{2} \alpha \cos^{2} \alpha}{2g \times 4}$ $= \left(\frac{u^{2} \sin 2\alpha}{g}\right)^{2} \times \frac{1}{16}$ $H_{1} \times H_{2} = \frac{R^{2}}{16}$ $R = 4 \sqrt{H_{1}H_{2}}$

