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Day-1 

 

1. Capacitor 

Any two conductor having opposite charge place close to each other and if they maintain a 

constant potential difference across them is known as capacitor. 

                                                                         

 

 

 

 

   

 

1.1 Objectives of Capacitors 

  (i) To collect charge or potential energy.                      

  (ii)  To maintain potential difference constant. 

  

    𝑞 ∝ 𝑉   

   ⇒            
𝑞

𝑉
= constant   

   ⇒            
𝑞

𝑉
= 𝐶   

 

  Capacitor defined as: 

   (i) Ability to store the charge and potential energy.   

   (ii) Ability to maintain potential difference. 

   

1.2 Units Capacitance 

  Farad (f),  Pico Farad (pf) etc.      

  Symbol 

    

 

 

1.3 Capacitors and Capacitance  

Any two conductors separated by an insulator form a capacitor. In most practical applications, 

 CAPACITOR 
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each conductor initially has zero net charge and electrons are transferred from one conductor to 

the other; this is called charging the capacitor. Then the two conductors have charges with 

equal magnitude and opposite sign, and the net charge on the capacitor as a whole remains zero. 

We will assume throughout this chapter that this is the case. When we say that a capacitor has 

charge Q, or that a charge Q is stored on the capacitor, we mean that the conductor at 

higher potential has charge +Q and the conductor at lower potential has charge –Q. Keep this 

in mind in the following discussion and examples.   

In circuit diagrams a capacitor is represented by either of these symbols:    

   

 

In either symbol the vertical lines represent the conductors and the horizontal lines represent wires 

connected to either conductor. One way to charge a capacitor is to connect these two wires to 

opposite terminals of a battery.     

The electric field at any point in the region between the conductors is proportional to the 

magnitude Q of charge on each conductor. It follows that the potential difference Vab between the 

conductors is also proportional to Q. If we double the magnitude of charge on each conductor, the 

charge density at each point doubles, the electric field at each point doubles, and the potential 

difference between conductors doubles; however, the ratio of charge to potential difference does 

not change. This ratio is called the capacitance C of the capacitor:     

  𝐶 =
𝑞

𝑉𝑎𝑏
           (definition of capacitance)   

The SI unit of capacitance is called one farad (1 F), in honor of the nineteenth century English 

physicist Michael Faraday. From the last equation, one farad is equal to one coulomb per volt (1 

C/V):     1 F = 1 farad = 1 coulomb/volt)    

The simplest form of capacitor consists of two parallel conducting places, each with area A, 

separated by a distance d that is small in comparison with their dimensions. When the plates are 

charged, the electric field is almost completely localized in the region between the plates. We call 

this arrangement a parallel-plate capacitor.     

We worked out the electric-field magnitude E for this arrangement in Example using the principle 

of superposition of electric fields. So the field magnitude E can be expressed as     

  𝐸 =
𝜎

𝜀o
=

𝑄

𝜀o𝐴
         

The field is uniform, and the distance between the plates is d, so the potential difference between 

the two plates is    

  𝑉𝑎𝑏 = 𝐸𝑑 =
1

𝜀o

𝑄𝑑

𝐴
    

From this we see that the capacitance C of a parallel-plate capacitor in vacuum is    

  𝐶 =
𝑄

𝑉𝑎𝑏
= 𝜀o

𝐴

𝑑
    (capacitance of a parallel − plate capacitor in vacuum)      
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1.4 Actual Capacitor 

Applications of capacitor 

Radio receivers, Television receivers, Air bag sensors for car electronic flash units for 

photography etc.    

1.5 Types of Capacitors 

(i) Isolated Spherical Capacitor 

 Potential at point P    

 V =
1

4𝜋𝜖o

𝑞

𝑅
   

 C =
𝑞

𝑉
=

𝑞4𝜋𝜖𝑜

𝑞
     

 C = 4𝜋𝜖𝑜𝑅     

 

(ii) Earthed Spherical Capacitor  

 Potential at 𝑃1 ⇒ 𝑉𝑃1
= 0     

 Potential at 𝑃2 ⇒ 𝑉𝑃2
⇒    

  𝑉𝑃2
=

1

4𝜋𝜖𝑜
 (

𝑞

𝑎
−

𝑞

𝑏
)   

  ∆𝑉 = 𝑉𝑃2
− 𝑉𝑃1

   

         =
𝑞

4𝜋𝜖𝑜
(
𝑏 − 𝑎

𝑎𝑏
)   

     𝐶 =
𝑞

∆𝑉
    

     𝐶 =
𝑞 𝑎𝑏

𝑞(𝑏 – 𝑎)
4𝜋𝜖𝑜    

     𝐶 = 4𝜋𝜖𝑜
𝑎𝑏

𝑏 − 𝑎 
   

 

(iii) Earthed Concentric Spherical Capacitor 

  Potential 𝑃1 ⇒ 𝑉𝑃 = 0    

  
1

4𝜋𝜖𝑜
[−

𝑞1

𝑎
+

𝑞1

𝑏
+

𝑞 − 𝑞1

𝑐
] = 0   

  𝑞1 = 𝑞 (
𝑎𝑏

𝑏𝑐 + 𝑎𝑏 − 𝑎𝑐
)   

  ∆𝑉 =
1

4𝜋𝜖𝑜
[
𝑞1

𝑎
−

𝑞1

𝑏
]   

  ∆𝑉 =
𝑞1

4𝜋𝜖𝑜
[
1

𝑎
−

1

𝑏
]    

  ∆𝑉 =
𝑞1

4𝜋𝜖𝑜
(
𝑏 − 𝑎

𝑎𝑏
)   
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  ∆𝑉 =
𝑞

4𝜋𝜖𝑜
(

𝑏 − 𝑎

𝑏𝑐 + 𝑎𝑏 − 𝑎𝑐
)    

  𝐶 =
𝑞

∆𝑉
= 4𝜋𝜖𝑜  (

𝑏𝑐 + 𝑎𝑏 − 𝑎𝑐

𝑏 − 𝑎
)    

               = 4𝜋𝜖𝑜 (
𝑎𝑏

𝑏 − 𝑎
+

𝐶(𝑏 – 𝑎)

𝑏 − 𝑎
)   

  𝐶 = 4𝜋𝜖𝑜 (
𝑎𝑏

𝑏 − 𝑎
+ 𝐶)    

 

 (vi) Spherical Earthed Capacitor 

 In pervious case   

 Put b = c 

  𝐶 = 4𝜋𝜖𝑜 (
𝑎𝑏

𝑏 − 𝑎
+ 𝑏)      

   𝐶 = 4𝜋𝜖𝑜 (
𝑏2

𝑏 − 𝑎
)   

 

(v) Parallel Plate Capacitor 

 Net electric field at point P   

  = 𝐸1 + 𝐸2   

  =
𝑞

2𝜖𝑜𝐴
+

𝑞

2𝜖𝑜𝐴
    

            𝐸 =
𝑞

𝜖𝑜𝐴
   

 Now   𝐸 =
𝑉

𝑑
=

𝑞

𝜖𝑜𝐴
       

 ⇒        𝑉 =
𝑞𝑑

𝜖𝑜𝐴
     

 Now   𝑉 =
𝑞

𝐶
 ⇒

𝑞

𝐶
=

𝑞𝑑

𝜖𝑜𝐴
    

 ⇒        𝐶 =
𝜖𝑜𝐴

𝑑
 

 

(vii) Cylindrical capacitor 

 Electric field at point P    

  𝐸𝑃 =
𝜆

2𝜋𝜖𝑜𝑟
   

 Now        𝐸𝑃 = −
𝑑𝑣

𝑑𝑟
    

  −
𝑑𝑣

𝑑𝑟
=

𝜆

2𝜋𝜖𝑜𝑟
    

 

  ∫ 𝑑𝑉
𝑉

0
= −

𝜆

2𝜋𝜖𝑜
∫

𝑑𝑟

𝑟

𝑏

𝑎
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         𝑉 = −
𝜆

2𝜋𝜖𝑜
 In 

𝑎

𝑏
    

         𝑉 =
𝜆

2𝜋𝜖𝑜
 In 

𝑏

𝑎
    

 Now                𝜆 =
𝑎

𝑙
        

                       𝑉 =
𝑞

𝑙

2𝜋𝜖𝑜
 In

𝑏

𝑎
     

          𝐶 =
𝑞

𝑉
  ⇒ Capacitance per unit length   

          𝐶′ =
𝐶

𝑙
=

𝑞

𝑙

𝑉
    

          𝐶′ =
𝑞

𝑙
 2𝜋𝜖𝑜

𝑞

𝑙
 In

𝑏

𝑎

     

          𝐶′ =
2𝜋𝜖𝑜

In
𝑏

𝑎

     

1.6 Dielectrics  

Most capacitors have a non conducting material or dielectric, between their conducting plates. 

1.7 Advantages of Dielectrics 

(i) It maintain two large metal conducting sheets at a very small separation without actual contact. 

(ii) It allows a capacitor to sustain a higher potential difference V and so store greater amounts of 

charge and energy.   

(iii) Increase the capacitance K times    

  

 

 

  In any medium    

 Here K is dielectric constant    

 Note:- In presence of any dielectric between plates.   

 (i) Capacitance increase by K times.   

 (ii) Electric field and Potential difference decrease by K times. 

(iii) Amount of charge remains constant value of K (dielectric constant)  

(1) Vacuum   K = 1.   

(2) Air (1atm)   K = 1.00059 ⇒ K = 1    

(3) Teflon   K = 2.1   

(4) Mica    K = 3 to 6  

(5) Glass   K = 5 to 10   

(6) Glycerin   K = 42.5  
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(7) Water   K = 80.4   

 

 

1.8 Capacitor Partially Filled With Dielectric 

Charge on dielectric due to induction    

  𝑞1 = 𝑞 (1 −
1

𝐾
)    

Potential difference between plates of the capacitor   

  𝑉 = 𝐸𝑡 + 𝐸𝑜(𝑑 − 𝑡) 

  𝑉 =
𝐸𝑜

𝐾
𝑡 + 𝐸𝑜(𝑑 − 𝑡)   

       = 𝐸𝑜 ((𝑑 − 𝑡) +
𝑡

𝐾
)   

  𝑉 = 𝐸𝑜 [(𝑑 − 𝑡) +
𝑡

𝐾
]   

  𝑉 =
𝑞

𝜖𝑜𝐴
[(𝑑 − 𝑡) +

𝑡

𝐾
]    

  𝐶 =
𝑞

𝑉
=

𝑞𝜖𝑜𝐴

𝑞[(𝑑−𝑡)+
𝑡

𝐾
]
      

  𝐶 =
𝜖𝑜𝐴

[(𝑑−𝑡)+
𝑡

𝐾
]
     

 

 (i) If n dielectrics 

  𝐶 =
𝜖𝑜𝐴

[(𝑑 − (𝑡1 + 𝑡2+ … +𝑡𝑛)) + (
𝑡1
𝑘1

 + 
𝑡2
𝑘2

 + …  + 
𝑡𝑛
𝑘𝑛

)] 
     

  

    

 

 

  

  

 

 

 

 (ii) If completely filled by dielectric 

   𝐶 =
𝐾𝜖𝑜𝐴

𝑑
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(iii) If conducting slab (K = ∞) placed between plates 

  𝐶 =
𝜖𝑜𝐴

𝑑 − 𝑡
     

    

 

 

  

 

 

  

 

    

1.9 Electric-Field Energy 

We can charge a capacitor by moving electrons directly from one plate to another. This requires 

doing work against the electric field between the plates. Thus we can think of the energy as being 

stored in at the field in the region between the plates. To develop this relation, let’s find the energy 

per unit volume in the space between the plates of a parallel-plate capacitor with place area A and 

separation d. We call this the energy density, denoted by u. From the last equation the total stored 

potential energy is 
1

2
𝐶𝑉2   and the volume between the plates is just Ad; hence the energy density 

is     𝑢 = Energy density =
1

2
 𝐶𝑉2

𝐴𝑑
    

From the last equations the capacitance C is given by C = εo A/d. The potential difference V is 

related to the electric field magnitude E by V = Ed. If we use these expressions in the last 

equation, the geometric factors A and d cancel, and we find  

  𝑢 =
1

2
𝜀𝑜𝐸

2      (electric enrgy density in a vacuum)    

Illustration 

In figure we charge a capacitor of capacitance C1 = 8 μF by connection it to a source of potential 

difference Vo = 120 V. The switch S is initially open. Once C1 is charged, the source of potential 

difference is disconnected. (a) What is the charge Qo on C1 if switch S is left open? (b) What is the  
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energy stored in C1 if switch S is left open? (c) The capacitor of capacitance C2 = 4.0 μF is 

initially uncharged. After we close switch S, what is the potential difference across each capacitor, 

and what is the charge on each capacitor? (d) What is the total energy of the system after we close 

switch S?   

Solution 

(a) The charge Qo on C1 is  

  𝑄𝑜 = 𝐶1𝑉𝑜 = (8.0 𝜇𝐹)(120 𝑉) = 960 𝜇𝐶    

(b) The energy initially stored in the capacitor is 

  𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
1

2
 𝑄𝑜𝑉𝑜 =

1

2
 (960 × 10−6 𝐶)(120 𝑉)      

(c) When the switch is closed, the positive charge Qo becomes distributed over the upper plates of 

both capacitors and the negative charge –Qo is distributed over the lower plates of both capacitors. 

Let Q1 and Q2 be the magnitudes of the final charges on the two capacitors. From conservation of 

charge,    

  𝑄1 + 𝑄2 = 𝑄𝑜   

           𝑄1 = 𝐶1𝑉              𝑄2 = 𝐶2𝑉    

             𝑉 =
𝑄𝑜

𝐶1+ 𝐶2
=

960 𝜇𝐶

8.0𝜇𝐹 + 4.0 𝜇𝐹
= 80 𝑉    

                   𝑈𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑄1𝑉 +

1

2
𝑄   𝑉+=

1

2
𝑄𝑜𝑉    

   =
1

2
(960 × 10−6)(80 𝑉) = 0.038 J       

1.10 Dielectrics 

Most capacitors have a no conducting material, or dielectric, between their conducting plates. A 

common type of capacitor uses long strips of metal foil for the plates, separated by strips of plastic 

sheet such as Mylar. A sandwich of these materials is rolled up, forming a unit that can provide a 

capacitance of several microfarads in a compact package.   

Placing a solid dielectric between the plates of a capacitor serves three functions. First, it solves 

the mechanical problem of maintaining two large metal sheets at a very small separation without 

actual contact. 

Second, using a dielectric increases the maximum possible potential difference between the 

capacitor plates. 

Third, the capacitance of a capacitor of given dimensions is greater when there is a dielectric 

material between the plates than when there is a vacuum. We can demonstrate this effect with the 

aid of a sensitive electrometer, a device that measures the potential difference between two 
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conductors without letting any appreciable charge flow from one to the other.    

The original c capacitance Co is given by Co = Q/Vo, and the capacitance C with the dielectric 

present is C = Q/V. The charge Q is the same in both cases, and V is less than Vo, so we conclude 

that the capacitance C with the dielectric present is greater than Co. When the space between plates 

is completely filled by the dielectric, the ratio of C to Co is called the dielectric constant of the 

material, K:   

  𝐾 =
𝐶

𝐶𝑜
                 (definition of dielectric , constant)    

With the charge is constant, Q = CoVo = CV and 
𝐶

𝐶𝑜
=

𝑉𝑜

𝑉
. In this case, equation can be rewritten as  

 ` 𝑉 =
𝑉𝑜

𝐾
                  (when Q is costant)   

With the dielectric present, the potential difference for a give charge Q is reduced by a factor K.    

1.11 Values of Dielectric Constant K at 20o C  

Material K Material K 

Vacuum  1 Polyvinyl chloride  3.18 

Air(1 atm)  1.00059 Plexiglas  3.40 

Air (100 atm)  1.0548 Glass  5-10 

Teflon  2.1 Neoprene  6.70 

Polyethylene  2.25 Germanium  16 

Benzene  2.28 Glycerin  42.5 

Mica  3-6 Water  80.4 

Mylar  3.1 Strontium titanate  310 

 

1.12 Induced Charge and Polarization 

When a dielectric material is inserted between the plates while the charge is kept constant, the 

potential difference between the plates decreases by a factor K. Therefore the electric field 

between the plates must decrease by the same factor.    

If Eo is the vacuum value and E is the value with the dielectric, then    

   𝐸 =
𝐸𝑜

𝐾
              (when Q is constant)   

Since the electric-field magnitude is smaller when the dielectric is present, the surface charge 

density (which causes the field) must be smaller as well. The surface charge on the conducting 

plate does not change, but an induced charge of the opposite sign appears on each surface of 

dielectric. The dielectric was originally electrically neutral, and is still neutral; the induced surface 

charges arise as a result of redistribution of positive and negative charge within the dielectric 

material, a phenomenon called polarization.     

We can derive a relation between this induced surface charge and the charge and the charge on the 
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plates. Let’s denote the magnitude of the charge per unit area induced on the surfaces of the 

dielectric by σ1. The magnitude of the surface charge density on the capacitor plates is σ, as usual. 

Then the net surface charge on each side of the capacitor has magnitude (σ – σi) as shown in 

figure. Without and with the dielectric, respectively, we have   

  𝐸𝑜 =
𝜎

𝜖𝑜
               𝐸 =

𝜎 − 𝜎𝑖

𝜖𝑜
    

  𝜎𝑖 = 𝜎 (1 −
1

𝐾
)             (induced surface charge density)    

This equation shows that when K is very large, 𝜎𝑖 is nearly as large, 𝜎 as. In this case, 𝜎𝑖 nearly 

cancels 𝜎, and the field and potential difference are much smaller than their values in vacuum. 

The product 𝐾𝜀𝑜 is called the permittivity of the dielectric, denoted by 𝜀:     

  𝜀 = 𝐾𝜀𝑜             (definition of premittivity)    

  𝐸 =
𝜎

𝜀
    

The capacitance when the dielectric is present is given by     

 𝐶 = 𝐾𝐶𝑜 = 𝐾𝜀𝑜
𝐴

𝑑
= 𝜀

𝐴

𝑑
        (parallel − plate capacitor, dieelectric between plates)    

We can repeat the derivation of above equations for the energy density u in an electric field for the 

case in which a dielectric is present. The result is     

 𝑢 =
1

2
𝐾𝜀𝑜𝐸

2 =
1

2
𝜀𝐸2             (electric energy density in a dielectric)    

Illustration 

Suppose the parallel plates each have an area of 200 cm2 (2.00 × 10–1 m2) are the 1.00cm (1.00 × 

10–2 m2) aprt. The capacitor is connected to a power supply and charged to a potential difference 

Vo = 300 kV. It is then disconnected from the power supply, and completely filling the space 

between them. We find that the potential difference decreases to 1000V while the charge on each 

capacitor plate remains constant. Compute a); the original capacitance Co. b); the magnitude of 

charge Q on each plate c); the after the dielectric is inserted d); the dielectric constant K of the 

dielectric e); the permittivity ∈ of the dielectric f); the magnitude of the induced charg Qi on each 

face of the dielectric g); the original electric field Eo between the plates and h); the electric field E 

after the dielectric is inserted?     

Solution 

a) With vacuum between the plates, we use with K = 1    

  𝐶𝑜 = ∈𝑜
𝐴

𝑑
= (8.85 × 10−12 𝐹/𝑀) 

2.00 × 10−1 𝑚2

1.00 × 1−−2 𝑚
    

       = 1.77 × 10−10𝐹 = 177 𝑝𝐹      

b) Using the dielectric of capacitance,  

  𝑄 = 𝐶𝑜𝑉𝑜 = (1.77 × 10−10𝐹)(3.00 × 103𝑉)   

      = 5.31 × 10−7𝐶 = 0.531 𝜇𝐶        

 c) When the electric is inserted, the charge remains the same but the potential decreases to V = 
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1000V. Hence the new capacitance is    

  𝑪 =
𝑸

𝑉
=

5.31 × 10−7 𝐶

1.00 × 10−10 𝑉
= 5.31 × 10−10 = 531 𝐹     

d) The dielectric constant is  

  𝐾 =
𝐶

𝐶𝑜
=

5.31 × 10−7 𝐹

1.77 × 10−10 𝐹
=

531 𝑝𝐹

177 𝑝𝐹
= 3.00     

  𝐾 =
𝑉𝑜

𝑉
=

3000 𝑉

1000 𝑉
= 3.00      

e) Using K from park (d) in, the permittivity is     

  ∈ = 𝐾∈𝑜
= (3.00) (8.85 × 10−12 𝑐2 

𝑁
. 𝑚2)    

     = 2.66 × 10−11 𝐶2/𝑁.𝑚2 

f)                          𝑄𝑖 = 𝑄 (1 −
1

𝐾
) = (5.31 × 10−7 𝐶) (1 −

1

3.00
)     

        = 3.54 × 10−7𝐶   

g)  𝐸𝑜 =
𝑉𝑜

𝑑
=

3000 𝑉

1.00 × 10−2 = 3.00 × 105 𝑉/𝑚        

h) With the new potential difference after the dielectric is inserted,  

  𝐸 =
𝑉

𝑑
=

1000 𝑉

1.00 × 10−2 𝑚
= 1.00 × 105 𝑉/𝑚     

  𝐸 =
𝜎

∈
=

𝑄

∈𝐴
=

5.31 × 10−7𝐶

 (2.66 × 1011𝐶2/𝑁.𝑚) (2.00 × 10−1 𝑚2) 
      

      = 1.00 × 105 𝑉/𝑚     

  𝐸 =
𝜎 − 𝜎𝑖

∈𝑜
=

𝑄 − 𝑄𝑖

∈𝑜𝐴
     

      =
(5.31 − 3.54) × 10−7 𝐶 

(8.85×10−12 𝐶2𝑁/𝑚2) (2.00 ×10−1 𝑚2) 
     

       = 1.00 × 105 𝑉/𝑚   

  𝐸 =
𝐸𝑜

𝐾
=

3.00 × 105 𝑉/𝑚

3.00
= 1.00 × 105 𝑉/𝑚    

 

1.13 Dielectric Breakdown 

We mentioned earlier that when any dielectric material is subjected to a sufficiently strong electric 

field, dielectric breakdown takes place and the dielectric becomes a conductor. Thus occurs when 

the electric field is so strong that electric are ripped loose from their molecules and crash into 

other molecules, liberating even more electrons. This avalanche of moving charge, forming a 

spark or arc discharge, often starts quite suddenly. Because of dielectric breakdown, capacitors 

always have maximum voltage ratings. When a capacitor is subjected to excessive voltage, an arc 

may from through a layer of dielectric, corning or melting a hole in it.     

Dielectric Constant and Dielectric Strength of some insulating Materials 
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Material Dielectric Constant. K Dielectric Strength, 

𝐸max(𝑉/𝑚) 

Polycarbonate  2.8 3 × 107 

Polyester  3.3 6 × 107 

Polypropylene  2.2 7 × 107 

Polystyrene  2.6 2 × 107 

Pyrex Glass  4.7 1 × 107 

 

Illustration 

Illustration 

The plates of a parallel-plate capacitor in vacuum are 5.00 mm apart and 2.00 m2 in area. A 

potential difference of 10,000 V (10.0 kV) is applied across the capacitor. Compute (a) the 

capacitance; (b) the charge on each plate; and (c) the magnitude of the electric field in the space 

between them. 

Solution 

 (a) From     

    𝐶 = 𝜀𝑜
𝐴

𝑑
=

(8.85 × 10−17 𝐹

𝑚
)(2.00 𝑚2)

5.00 × 10−3      

       = 3.54 × 10−9 𝐹 = 0.00354 𝜇𝐹    

 (b) The charge on the capacitor is 

   𝑄 = 𝐶𝑉𝑎𝑏 = (3.54 × 10−9 𝐶

𝑉
) (1.00 × 104 𝑉)     

       = 3.54 × 10−5𝐶 = 35.4 𝜇𝐶     

 The plate at higher potential has charge +35,4 μC and the other plate has charge –35.4 μC.  

 (c) The electric-field magnitude is  

   𝐸 =
𝜎

𝜀𝑜
=

𝑄

𝜀𝑜𝐴
=

3.54×10−5

(8.85×10−12𝑐2

𝑁
.𝑚2)(2.00 𝑚2)

     

       = 2.00 × 106 𝑁/𝐶   
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