

Day 1

Basic definition

Slope (Gradient) of a line

The trigonometrical tangent of the angle that a line makes with the positive direction of x -axis in anticlockwise sense is called the slope or gradient of the line .

Slope of a line in terms of coordinates of any two points on it

Let $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ be two points on a line. Then its slope m is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { Difference of ordinates }}{\text { Difference of abscissae }}
$$

Slope of a line when its equation is given
The slope of a line whose equation is $a x+b y+c=0$ is given by

$$
m=-\frac{a}{b}=-\frac{\text { coeff.of } x}{\operatorname{coeff.of~} y}
$$

Angle between two lines

The angle θ between two lines having slopes m_{1} and m_{2} is given by

$$
\tan \theta= \pm\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)
$$

When two line are parallel, their slopes are equal.

$$
m_{1}=m_{2}
$$

Two lines of slopes m_{1} and m_{2} are perpendicular, then

$$
m_{1} \cdot m_{2}=-1
$$

Equation of a straight line

The equation of a straight line passing through a point $\left(x_{1}, y_{1}\right)$ and slope m is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{aligned}
& \text { slope of tangent }=\left(\frac{d y}{d x}\right)_{P}=\tan \theta \\
& \qquad \text { slope of normal }=-\frac{1}{\left(\frac{d y}{d x}\right)_{P}}
\end{aligned}
$$

Illustration

Find the equation of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$

Solution

The equation of the given curve is

$$
\begin{equation*}
y^{2}=4 a x \tag{i}
\end{equation*}
$$

Differentiating (i) with respect to x , we get

$$
\begin{aligned}
& 2 y \frac{d y}{d x}=4 a \\
& \Rightarrow \frac{d y}{d x}=\frac{2 a}{y} \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(a t^{2}, 2 a t\right)}=\frac{2 a}{2 a t} \\
& \Rightarrow \frac{1}{t}
\end{aligned}
$$

So, that equation of the tangent at $\left(a t^{2}, 2 a t\right)$ is

$$
\begin{aligned}
& y-2 a t=\left(\frac{d y}{d x}\right)_{\left(a t^{2}, 2 a t\right)}\left(x-a t^{2}\right) \\
& \text { or } y-2 a t=\frac{1}{t}\left(x-a t^{2}\right) \\
& \text { or } t y=x+a t^{2}
\end{aligned}
$$

And, the equation of the normal at $\left(a t^{2}, 2 a t\right)$ is

$$
\begin{aligned}
& y-2 a t=-\frac{1}{\left(\frac{d y}{d x}\right)_{\left(a t^{2}, 2 a t\right)}}\left(x-a t^{2}\right) \\
& \Rightarrow y-2 a t=-\frac{1}{\frac{1}{t}}\left(x-a t^{2}\right) \\
& \Rightarrow y-2 a t=-t\left(x-a t^{2}\right) \\
& \Rightarrow y+t x=2 a t+a t^{3}
\end{aligned}
$$

Illustration

Find the equation of the tangent and normal to $16 x^{2}+9 y^{2}=144$ at the point $\left(x_{1}, y_{1}\right)$ where $x_{1}=2$ and $y_{1}>0$

Solution

The equation of the given curve is

$$
\begin{equation*}
16 x^{2}+9 y^{2}=144 \tag{i}
\end{equation*}
$$

Since $\left(x_{1}, y_{1}\right)$ lies on (i), therefore

$$
\begin{aligned}
& 16 x_{1}^{2}+9 y_{1}^{2}=144 \\
& \Rightarrow 16(2)^{2}+9 y_{1}^{2}=144 \\
& \Rightarrow y_{1}^{2}=\frac{80}{9} \\
& \Rightarrow y_{1}=\frac{4 \sqrt{5}}{3}
\end{aligned}
$$

$$
\left[\because y_{1}>0\right]
$$

So, the given point is

$$
\left(2, \frac{4 \sqrt{5}}{3}\right)
$$

Now,

$$
\begin{aligned}
& 16 x^{2}+9 y^{2}=144 \\
& \Rightarrow 32 x+18 y \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=-\frac{16 x}{9 y} \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(2, \frac{4 \sqrt{5}}{3}\right)}=-\frac{16 \times 2}{9 \times \frac{4 \sqrt{5}}{3}} \\
& \Rightarrow-\frac{8}{3 \sqrt{5}}
\end{aligned}
$$

[Differentiating with respect to x.]

So, the equation of the tangent at

$$
\begin{aligned}
& \left(2, \frac{4 \sqrt{5}}{3}\right) \text { is } \\
& y-\frac{4 \sqrt{5}}{3}=\left(\frac{d y}{d x}\right)_{\left(2, \frac{4 \sqrt{5}}{3}\right)}(x-2) \\
& \Rightarrow y-\frac{4 \sqrt{5}}{3}=-\frac{8}{3 \sqrt{5}}(x-2) \\
& \Rightarrow 8 x+3 \sqrt{5} y-36=0
\end{aligned}
$$

And, the equation of the normal at

$$
\begin{aligned}
& \left(2, \frac{4 \sqrt{5}}{3}\right) \text { is } \\
& y-\frac{4 \sqrt{5}}{3}=-\frac{1}{\left(\frac{d y}{d x}\right)_{\left(2, \frac{4 \sqrt{5}}{3}\right)}}(x-2) \\
& \Rightarrow y-\frac{4 \sqrt{5}}{3}=\frac{-1}{-\frac{8}{3 \sqrt{5}}}(x-2) \\
& \Rightarrow y-\frac{4 \sqrt{5}}{3}=\frac{3 \sqrt{5}}{8}(x-2) \\
& \Rightarrow 9 \sqrt{5} x-24 y+14 \sqrt{5}=0
\end{aligned}
$$

Illustration

Find the equation of the tangent line to $y=2 x^{2}+7$ which is parallel to the line $4 x-y+3=0$.

Solution

Let the point of contact of the required tangent line be (x_{1}, y_{1})
The equation of the given curve is $y=2 x^{2}+7$
Differentiating both sides with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=4 x \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=4 x_{1}
\end{aligned}
$$

Since the line $4 x-y+3=0$ is parallel to the tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
\therefore slope of the tangent at $\left(x_{1}, y_{1}\right)=$ slope of the line $4 x-y+3=0$

$$
\begin{aligned}
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{-4}{-1} \\
& {\left[\because \text { slope }=-\frac{\text { coeff.of } x}{\text { coeff.of } y}\right]} \\
& \Rightarrow 4 x_{1}=4 \\
& \Rightarrow x_{1}=1
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \text { lies on } \\
& y=2 x^{2}+7 . \\
& \therefore y_{1}=2 x_{1}^{2}+7 \\
& \Rightarrow y_{1}=2+7 \\
& \Rightarrow 9
\end{aligned}
$$

$$
\left[\because x_{1}=1\right]
$$

So, the coordinates of the point of contact are $(1,9)$. Hence, the required equation of the tangent line is

$$
\begin{aligned}
& y-9=4(x-1) \\
& \Rightarrow 4 x-y+5=0
\end{aligned}
$$

Illustration

Find the equation of tangent to the curve $y=x^{3}+2 x+6$ which is perpendicular to the line $x+$ $14 y+4=0$.

Solution

Let the coordinates of the point of contact be $\left(x_{1}, y_{1}\right)$.
Then

$$
\begin{align*}
& y_{1}=x_{1}^{3}+2 x_{1}+6 \ldots .(i) \tag{i}\\
& {\left[\because\left(x_{1}, y_{1}\right) \text { lies on line } y=x^{3}+2 x+6\right]}
\end{align*}
$$

The equation of the curve is

$$
y=x^{3}+2 x+6
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}+2 \\
& \Rightarrow\left(\frac{d y}{d x s}\right)_{\left(x_{1}, y_{1}\right)}=3 x_{1}^{2}+2
\end{aligned}
$$

Since the tangent at $\left(x_{1}, y_{1}\right)$ is perpendicular to the line $x+14 y+4=0$,
Therefore,

$$
\begin{aligned}
& \text { slope of the tangent at }\left(x_{1}, y_{1}\right) \times \text { slope of the line }=-1 \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)} \times-\frac{1}{14}=-1 \\
& \Rightarrow\left(3 x_{1}^{2}+2\right)\left(-\frac{1}{14}\right)=-1 \\
& \Rightarrow 3 x_{1}^{2}+2=14 \\
& \Rightarrow x_{1}= \pm 2
\end{aligned}
$$

When

$$
x_{1}=2, y_{1}=2^{3}+2 \times 2+6=18
$$

When

$$
x_{1}=-2, y_{1}=(-2)^{3}+2 \times(-2)+6=-6
$$

So, the coordinates of the points of contact are $(2,18)$ and $(-2,-6)$
The equation of the tangent at $(2,18)$ is

$$
\begin{aligned}
& y-18=14(x-2) \\
& \Rightarrow 14 x-y-10=0 \\
& {\left[\text { using } y-y_{1}=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}\left(x-x_{1}\right)\right]}
\end{aligned}
$$

The equation of the tangent at $(-2,-6)$ is

$$
\begin{aligned}
& y-6=14(x-2) \\
& \Rightarrow 14 x-y+22=0
\end{aligned}
$$

Illustration

Show that the curve $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.

Solution

Curve are $4 x=y^{2}$ (i) and $4 x y=k$

Eliminating y we get,

$$
\begin{aligned}
& 4 x=\left(\frac{k}{4 x}\right)^{2} \\
& \Rightarrow 64 x^{3}=k^{2} \\
& \Rightarrow x=\frac{k^{2 / 3}}{4}
\end{aligned}
$$

Put in (i)

$$
y=k^{1 / 3},
$$

Point of intersection is

$$
\left(\frac{k^{2 / 3}}{4}, k^{1 / 3}\right)
$$

Differentiating (i) with respect to x, we get

$$
\begin{align*}
& 4=2 y \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{2}{y} \\
& \left.\Rightarrow \frac{d y}{d x}\right]\left(\frac{k^{2 / 3}}{4}, k^{1 / 3}\right)=\frac{2}{k^{1 / 3}} . . \tag{iii}
\end{align*}
$$

Differentiating (ii) with respect to x , we get

$$
\begin{aligned}
& 4\left(x \frac{d y}{d x}+y .1\right)=0 \\
& \Rightarrow \frac{d y}{d x}=-\frac{y}{x} \\
& \left.\Rightarrow \frac{d y}{d x}\right]_{\left(\frac{k^{2 / 3}}{4}, k^{1 / 3}\right)}=-\frac{k^{1 / 3} \times 4}{k^{2 / 3}}
\end{aligned}
$$

