

Continuity and Differentiability

Day 1

Continuity of a function

A function f(x) is a said to be continuous at x=a; where a \in domain of f(x) If

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$$

Graphical View

(i) $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exists but are not equal.

Here,

$$\lim_{x \to a^{-}} f(x) = l_1$$
$$\lim_{x \to a^{+}} f(x) = l_2$$
$$\therefore \lim_{x \to a^{-}} f(x) \text{ and } \lim_{x \to a^{+}} f(x) \text{ exists but are not equal}$$
Thus, f(x) is discontinuous at x = a.
It does not matter whether f(a) exists or not.

If $f(x) = \begin{cases} 2x + 3, when x < 0\\ 0, when x = 0. \\ x^2 + 3, when x > 0 \end{cases}$ Discuss the continuity.

Solution

Here,

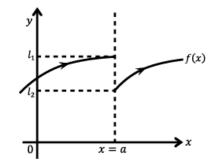
$$f(x) = \begin{cases} 2x + 3, when \ x < 0\\ 0, when \ x = 0\\ x^2 + 3, when \ x > 0 \end{cases}$$

 \therefore RHL at x = 0, let x = 0 + h i.e.,

$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} \{(0+h)^2 + 3\} = 3$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = 3$$

Again, LHL at x = 0, Let x = 0-h i.e.,



$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \{2(0 - h) + 3\} = 3$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = 3$$

But f(0) = 0

Therefore,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = 3 \neq f(0)$$

Thus, f(x) is discontinuous at $x \to 0$

Graphically:-

Here,

$$\lim_{x \to 0^{-}} f(x) = 3$$
$$\lim_{x \to 0^{+}} f(x) = 3$$
$$f(x) = 0$$

Thus,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 3 \neq f(0)$$

Hence, f(x) is discontinuous at x = 0

Illustration

If
$$f(x) = \frac{x^2 - 1}{x - 1}$$
. Discuss the continuity $at x \to 1$.

Solution

Here,

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)} = \lim_{x \to 1} (x + 1) = 2$$
But f(1) = 0/0 (in determined form)

$$\therefore f(1) \text{ is not defined at } x = 1$$
Hence, f(x) is discontinuous at x = 1
Graphically
Which shows,

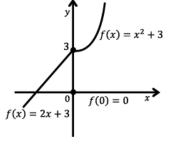
$$\lim_{x \to 1} f(x) = 2$$
But f(1) is not defined.

So, f(x) is discontinuous at x = 1.

Illustration

Discuss the continuity of $f(x) = [\tan^{-1} x]$.

Solution

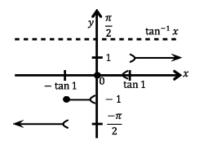


– tan 1

tan 1

We know $y = \tan^{-1} x$ could be plotted as;

Thus, $f(x) = [\tan^{-1} x]$ could b plotted as;



Which clearly represents graph is breaked at $\{-\tan 1, 0, \tan 1\}$ \therefore f(x) is not continuous when $x \in \{-\tan 1, 0, \tan 1\}$

Continuity at end points

Let a function y = f(x) is defined on [a, b]. Then the function f(x) is said to be continuous at the left end x = a if

$$f(a) = \lim_{x \to a^+} f(x)$$

If f(x) is said to be continuous at the right end x = b if,

$$f(b) = \lim_{x \to b^-} f(x)$$

Kinds of Discontinuity

Let the point x = a be the limit point in the domain of definition of y = f(x).

Discontinuity of 1st kind: In this kind of discontinuity the RHL and LHL of the function y = f(x) are existent (i.e. are finite and definite) at x = a and if

(i) $\lim_{h \to 0} f(a - h) = \lim_{h \to 0} f(a + h) \neq f(a)$ Then f(x) is said to have first kind removable discontinuity. This kind of discontinuity can be removed by putting $f(a) = \lim_{x \to a} f(x).$

(ii) $\lim_{h \to 0} f(a - h) \neq \lim_{h \to 0} f(a + h)$ Then f(x) is said to have find kind non-removable discontinuity.

The value
$$\lim_{h \to 0} f(a+h) - \lim_{h \to 0} f(a-h)$$
 is called jump discontinuity of f(x) at $x = a$.

Discontinuity of 2nd kind: If at least one of $\lim_{h \to 0} f(a + h)$ and $\lim_{h \to 0} f(a - h)$ is non –existent or infinite then f(x) is said to have discontinuity of 2nd kind at x = a.

Illustration

Show the function,

$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$$

(

(1

has non-removable discontinuity at x = 0.

Solution

We have,

$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$$

$$\therefore$$
 RHL at x = 0, let x = 0 + h

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} \frac{e^{\frac{1}{0+h}} - 1}{e^{\frac{1}{0+h}} + 1} = \lim_{h \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1}$$
$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}}$$
$$\Rightarrow \lim_{x \to 0^+} f(x) = \frac{1 - 0}{1 + 0} = 1 \left[as \ h \to 0; \frac{1}{h} \to \infty \Rightarrow e^{1/h} \to \infty; \frac{1}{e^{1/h}} \to 0 \right]$$
$$\therefore \lim_{x \to 0^+} f(x) = 1$$

Again, LHL at x = 0, let x = 0-h

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = \frac{0-1}{0+1} = -1$$

$$\Rightarrow \lim_{x \to 0^-} f(x) = -1$$

$$\Rightarrow \lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x).$$

Thus, f(x) has non-removable discontinuity.

Illustration

Show
$$f(x) = \frac{1}{|x|}$$

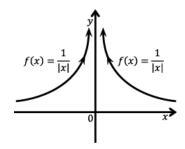
has discontinuity of second kind at x = 0.

Solution

Here,

$$f(x) = \frac{1}{|x|} = \infty$$

Which shows function has discontinuity of second kind.



Graphically

Here, the graph is broken at x = 0 as $x \to 0 \Rightarrow f(x) \to \infty$ Therefore, f(x) has discontinuity of second kind.

Jump discontinuity

A function f(x) is said to have a jump discontinuity at a point x = a if,

$$\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$$

And f(a) may be equal to either of previous limits.

Illustration

f(x) = [x]; [] denotes greatest integer has jump discontinuity at all integer values.

Properties of continuity function

Theorem (i): If the functions f(x) and g(x) are continuous at a point x = a then the sum $\emptyset = f(x) + g(x)$ is also continuous at that point x = a.

Proof : Since f(x) and g(x) are continuous at a point x = a we can write

 $\lim_{x \to a} f(x) = f(a) \text{ and } \lim_{x \to a} g(x) = g(a)$

Now

$$\lim_{x \to a} \phi(x) = \lim_{x \to a} \{f(x) + g(x)\}$$

 $\Rightarrow \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ (using theorems on limit)

$$\Rightarrow f(a) + g(a) = \emptyset(a)$$

Thus, the function $\phi(x) = f(x) + g(x)$ is continuous.

Similarly, we can prove the following theorems

Theorem (ii): The product to two continuous functions is a continuous function.

Theorem (iii): The ratio of two continuous functions is a continuous function, provided the denominator does not vanish at the point under consideration.

Theorem (iv): If u = g(x) is continuous at x = a and f(u) is continuous at the point u0=g(a), then the composite function $f\{g(x)\}$ is continuous at the point x = a.

Illustration

Discuss the continuity of the function,

$$f(x) = \lim_{n \to \infty} \frac{\ln(2+x) - x^{2n} \sin x}{1 + x^{2n}} \text{ at } x = 1.$$

Solution

We have,

$$f(1) = \lim_{n \to \infty} \frac{\ln 3 - \sin 1}{2} = \frac{1}{2} (\ln 3 - \sin 1) \qquad \dots (i)$$

We know that,

$$\lim_{n \to \infty} x^{2n} = \begin{cases} 0, & \text{if } x^2 < 1 \\ \infty, & \text{if } x^2 > 1 \end{cases}$$

 \therefore for $x^2 < 1$, we have

$$f(x) = \lim_{n \to \infty} \frac{\ln(2+x) - x^{2n} \sin x}{1 + x^{2n}} \to \ln(2+x) = \ln 3$$

Again for $x^2 > 1$, we have

$$f(x) = \lim_{n \to \infty} \frac{x^{1/2n} \ln(2+x) - \sin x}{1 + \frac{1}{x^{2n}}} \to -\sin(x)$$

Here, as $x \to 1$

$$\lim_{x \to 1^{-}} f(x) = \ln(3) \text{ and } \lim_{x \to 1^{+}} f(x) = -\sin 1$$

So,

$$\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x).$$

Therefore, f(x) is not continuous at x = 1.

Illustration

Let

$$f(x) = \begin{cases} \{1 + |\sin x|\}^{\frac{a}{|\sin x|}}; -\pi/6 < x < 0 \\ b; x = 0 \\ e^{\frac{tan2x}{\tan 3x}}; 0 < x < \pi/6 \end{cases}$$

Determine a and b such that f(x) is continuous at x = 0.

Solution

Since f is continuous at x = 0. Therefore, RHL = LHL = f(0) RHL at x = 0

$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} e^{\tan 2h/\tan 3h}$$

$$\Rightarrow \lim_{h \to 0} e^{\frac{\tan 2h}{2h} \cdot \frac{3h}{\tan 3h^2}} = e^{2/3} \dots (i)$$

Again LHL at x = 0:

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \{1 + |\sin(0 - h)|\}^{a/|\sin(0 - h)|}$$

$$\Rightarrow \lim_{h \to 0} \{1 + |\sin h|\}^{a/|\sin h|}$$

$$\Rightarrow e^{\lim_{h \to 0} |\sin h| \cdot \frac{a}{|\sin h|}} = e^{a} \dots (ii)$$

$$f(0) = b. \dots (iii)$$

Thus,

And

$$e^{2/3} = e^a = b \Rightarrow a = 2/3 \text{ and } b = e^{2/3}$$

Illustration

Find the points of discontinuity of

$$y = \frac{1}{u^2 + u - 2}$$

where
$$u = \frac{1}{x-1}$$

Solution

The function $u = f(x) = \frac{1}{x-1}$ is discontinuous at the point x = 1. ...(i) The function

$$y = g(x) = \frac{1}{u^2 + u - 2} = \frac{1}{(u+2)(u-1)}$$

is discontinuous at u = -2 and u = 1. When

$$u = -2, \frac{1}{x-1} = u = -2$$

$$\Rightarrow x - 1 = -\frac{1}{2} \Rightarrow x = \frac{1}{2} \qquad \dots (ii)$$

When

$$u = 1, \frac{1}{x - 1} = u = 1$$

$$\Rightarrow x - 1 = 1$$

$$\Rightarrow x = 2 \qquad \dots (iii)$$

Hence, the composite function y = g(f(x)) is discontinuous at three points x = 1/2, 1, 2.

A list of continuous functions

Function f(x)	Interval in which f(x) is continuous
1. constant c	$(-\infty,\infty)$
2. x^n , n is an integer ≥ 0	$(-\infty,\infty)$
3. x^{-n} , n is a positive integer	$(-\infty,\infty)-\{0\}$
4. $ x - a $	$(-\infty,\infty)$
5. $p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a^n$	$(-\infty,\infty)$
6. $\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in x	$(-\infty,\infty)-\{x:q(x)=0\}$
7. sin <i>x</i>	$(-\infty,\infty)$
8. cos <i>x</i>	$(-\infty,\infty)$
9. tan <i>x</i>	$(-\infty,\infty) - \{(2n+1)\pi/2 : n \in I\}$
10. cot <i>x</i>	$(-\infty,\infty) - \{n\pi: n \in I\}$
11. sec <i>x</i>	$(-\infty,\infty) - \{(2n+1)\pi/2 : n \in I\}$
12. <i>cosec x</i>	$(-\infty,\infty) - \{n\pi: n \in I\}$
13. <i>e^x</i>	$(-\infty,\infty)$
14. $\log_e x$	(0,∞) 0

Differentiability

Before introducing the concept and condition of differentiability, it is important to know differentiation and the concept Differential coefficient of a function y=f(x) is

written as

$$\frac{d}{dx}[f(x)] \text{ or } f'(x) \text{ or } f^{(1)}(x) \text{ as defined by}$$

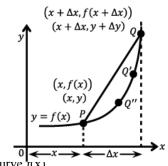
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) \text{ represents nothing but ratio by which}$$

$$f(x) \text{ charges for small change is x and can be}$$

$$\text{understood as}$$

$$f'(x) = \lim_{k \to 0} \left(\frac{\Delta x}{\Delta x} \right) = \frac{y}{x}$$



Then f'(x) represents slope of the tangent drawn at point 'x' of the curve f(x). Let us understand the geometrical meaning of differentiation: Slope of PQ

$$PQ = \frac{y_Q - y_P}{x_Q - x_P}$$

$$\Rightarrow \frac{(y + \Delta y) - y}{(x + \Delta x) - x} \text{ or } \frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x}$$

$$\Rightarrow \frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Let point Q approach point P, along the curve =y=f(x) i.e. $\Delta x \to 0$. Then, we observe graphically that the slope of chord PQ becomes the slope of the tangent at the point P, which is written as

$$\frac{dy}{dx}$$
 or $f'(x^+)$

Since, point Q is approaching point P from the Right Hand side, we obtain f'(x) as follows:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(Right hand derivative)

Similarly,

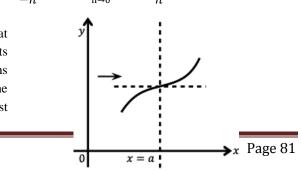
$$f'(x^{-}) = \lim_{\Delta x \to 0} \frac{f(x - \Delta x) - f(x)}{-\Delta x} , \Delta x > 0$$

(Left hand derivative)

Note: For a function to be differentiable at x=a, we should have $f'(a^-) = f'(a^+)$ i.e.

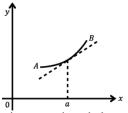
$$\lim_{h \to 0} \frac{f(a-h) - f(a)}{-h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

From the above graphs m one must not infer that a curve is non-differentiable only at points discontinuity. Non differentiability conditions also arise when the curve is continuous and the curve suddenly changes direction. The easiest



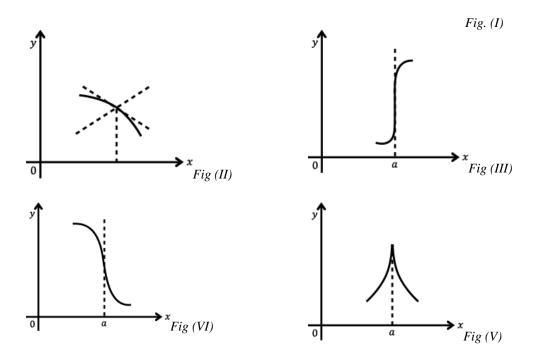
example of a curve being continuous and nondifferentiable is

y = |x| at x = 0. However when there is a smooth change or gradual change in slope or trajectory of curve the derivative exists.





Few more illustrations are given below: Refer to the following graphs:



In figure (i), f'(a) exists and is finite. In figure (ii) both $f'(a^-)$ and $f'(a^+)$ exist but they are not equal. Hence f(a) does not exist. Figure (iii) and (iv) have infinite derivatives, i.e. $f'(a) = +\infty$ and $f'(a) = -\infty$ respectively. In case of figure (v) we have $f'(a^-) = +\infty$ and $f'(a^+) = -\infty$ f'(a) does not exist.

Illustration

Let [.] denotes the greatest integer function and $f(x) = [\tan^2 x]$, then

(a)
$$\lim_{x \to 0} f(x)$$
 does not exists(b) $f(x)$ is continuous at $x = 0$ (c) $f(x)$ is not differentiable at $x = 0$ (d) $f'(0) = 1$

Solution

Here [.] denotes the greatest integral function, thus As

$$-45^{\circ} < x < 45^{\circ}$$

$$\Rightarrow \tan(-45^{\circ}) < \tan x < \tan 45^{\circ}$$

$$\Rightarrow -1 < \tan x < 1$$

$$\Rightarrow 0 < \tan^{2} x < 1$$

Hence

$$f(x) = [\tan^2 x] = 0$$

Hence, f(x) is zero for all values of x from (-45°) to (45°) . Thus, f(x) exists when $x \rightarrow 0$ and also it is continuous at x = 0, f(x) is differentiable at x = 0 and has a value 0.

Illustration

Show that the function $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is differentiable at x=0 and f'(0)=0

Solution

We have,

$$(LHD \ at \ x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(-h) - f(0)}{-h}$$

$$\Rightarrow \lim_{h \to 0} \frac{(-h)^{2} \sin\left(\frac{1}{-h}\right) - 0}{-h}$$

$$\Rightarrow \lim_{h \to 0} h \sin\left(\frac{1}{h}\right)$$

$$\Rightarrow 0 \times (an \ oscillating \ number \ between - 1 \ and \ 1)$$

$$\Rightarrow 0$$

$$(RHD \ at \ x = 0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 + h - 0}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(-h) - f(0)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{(h)^2 \sin\left(\frac{1}{-h}\right) - 0}{h}$$

$$\Rightarrow \lim_{h \to 0} h \sin\left(\frac{1}{h}\right)$$

$$\Rightarrow 0 \times (an oscillating number between - 1 and 1)$$

$$\Rightarrow 0$$

$$\therefore (LHD at x = 0) = (RHD at x = 0) = 0.$$

So , f(x) is differentiable at x = 0 and f'(0) = 0

Illustration

Discuss the differentiability of

$$f(x) = \begin{cases} xe^{-}\left(\frac{1}{|x|} + \frac{1}{x}\right), & x \neq 0 \text{ at } x = 0\\ 0, & x = 0 \end{cases}$$

Solution

We have,
$$f(x) = \begin{cases} xe^{-}\left(\frac{1}{x} + \frac{1}{x}\right) = xe^{-2/x}, x \ge 0\\ xe^{-}\left(\frac{-1}{x} + \frac{1}{x}\right) = x, x < 0\\ 0, x = 0 \end{cases}$$

Now,

$$(LHD at x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$
$$\Rightarrow \lim_{x \to 0} \frac{x - 0}{x - 0} = 1[\because f(x) = x \text{ for } x < 0 \text{ and } f(0) = 0]$$

And

$$(RHD \ at \ x = 0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow \lim_{x \to 0} \frac{xe^{-2/x} - 0}{x} = 1 [\because f(x) = x \ e^{-2/x} for \ x > 0 \ and \ f(0) = 0]$$

$$\Rightarrow \lim_{x \to 0} e^{-2/x} = 0$$

$$\therefore (LHD \ at \ x = 0) \neq (RHD \ at \ x = 0)$$

so , f(x) is not differentiable at x = 0