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Day 1 

 

Continuity of a function  

 A function f(x) is a said to be continuous at x=a; where adomain of f(x) 

 If  

lim
𝑥→𝑎−

 𝑓(𝑥) = lim
𝑥→𝑎+

 𝑓(𝑥) = 𝑓(𝑎) 

Graphical View  

(i) lim
𝑥→𝑎−

 𝑓(𝑥) and lim
𝑥→𝑎+

 𝑓(𝑥) exists but are not 

equal.  

Here,  

                              lim
𝑥→𝑎−

 𝑓(𝑥) = 𝑙1 

                              lim
𝑥→𝑎+

 𝑓(𝑥) = 𝑙2 

∴ lim
𝑥→𝑎−

 𝑓(𝑥) and lim
x→a+

𝑓(𝑥) exists but are not equal. 

Thus, f(x) is discontinuous at x = a. 

It does not matter whether f(a) exists or not. 

 

      

Illustration 

 If  𝑓(𝑥) = {
2𝑥 + 3,𝑤ℎ𝑒𝑛 𝑥 < 0
0, 𝑤ℎ𝑒𝑛 𝑥 = 0.

𝑥2 + 3,𝑤ℎ𝑒𝑛 𝑥 > 0
 𝐷𝑖𝑠𝑐𝑢𝑠𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦. 

Solution  

 Here,  

𝑓(𝑥) = {
2𝑥 + 3,𝑤ℎ𝑒𝑛 𝑥 < 0
0,𝑤ℎ𝑒𝑛 𝑥 = 0

𝑥2 + 3,𝑤ℎ𝑒𝑛 𝑥 > 0
 

  RHL at x = 0, let x = 0 + h 

 i.e.,  

lim
𝑥→0+

𝑓(𝑥) = lim
ℎ→0

𝑓(0 + ℎ) = lim
ℎ→0
{(0 + ℎ)2 + 3} = 3 

⇒ lim
𝑥→0+

𝑓(𝑥) = 3 

Again, LHL at x = 0,  

Let x = 0-h 

i.e.,  

Continuity and 

Differentiability 

Chapter                          

3 



 

  

 Page 75 
 

 

lim
𝑥→0−

𝑓(𝑥) = lim
ℎ→0

𝑓(0 − ℎ) = lim
ℎ→0
{2(0 − ℎ) + 3} = 3 

⇒ lim
𝑥→0−

𝑓(𝑥) = 3 

 But f(0) = 0 

 Therefore,  

lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0−

𝑓(𝑥) = 3 ≠ 𝑓(0) 

Thus, f(x) is discontinuous at 𝑥 → 0 

 

Graphically:- 

Here,  

lim
𝑥→0−

𝑓(𝑥) = 3 

lim
𝑥→0+

𝑓(𝑥) = 3 

𝑓(𝑥) = 0 

Thus,  

lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0+

𝑓(𝑥) = 3 ≠ 𝑓(0) 

Hence, f(x) is discontinuous at x = 0 

            

 

Illustration  

 𝐼𝑓 𝑓(𝑥) =
𝑥2−1

𝑥−1
. Discuss the continuity 𝑎𝑡 𝑥 → 1. 

Solution   

 Here,  

                                      𝑓(𝑥) =
𝑥2−1

𝑥−1
 

                          lim
𝑥→1

𝑓(𝑥) = lim
𝑥→1

𝑥2−1

𝑥−1
= lim

𝑥→1

(𝑥−1)(𝑥+1)

(𝑥−1)
= lim

𝑥→1
(𝑥 + 1) = 2 

But f(1) = 0/0 (in determined form) 

 f(1) is not defined at x = 1 

Hence, f(x) is discontinuous at x = 1 

Graphically 

Which shows,  

lim
𝑥→1

𝑓(𝑥) = 2 

But f(1) is not defined. 

So, f(x) is discontinuous at x = 1. 

 

 

 

Illustration  

 Discuss the continuity of 𝑓(𝑥) = [tan−1 𝑥]. 

Solution  
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We know 𝑦 = tan−1 𝑥 could be plotted 

as; 

 

 

 

Thus, 𝑓(𝑥) = [tan−1 𝑥] could b plotted 

as; 

 

  

  

 Which clearly represents graph is breaked at  

{- tan 1, 0, tan 1} 

 f(x) is not continuous when 𝑥 ∈ {− tan 1, 0, tan 1} 

 

Continuity at end points 

 Let a function 𝑦 = 𝑓(𝑥) is defined on [a, b]. 

 Then the function f(x) is said to be continuous at the left end x = a if  

𝑓(𝑎) = lim
𝑥→𝑎+

𝑓(𝑥)  

(𝑛𝑒𝑒𝑑 𝑛𝑜𝑡 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝐿𝐻𝐿) 

If f(x) is said to be continuous at the right end x = b if,  

𝑓(𝑏) = lim
𝑥→𝑏−

𝑓(𝑥) 

(𝑛𝑒𝑒𝑑 𝑛𝑜𝑡 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑅𝐻𝐿) 

Kinds of Discontinuity 

 Let the point x = a be the limit point in the domain of definition of y = f(x). 

 Discontinuity of 1st kind: In this kind of discontinuity the RHL and LHL of the function 𝑦 = 𝑓(𝑥)  

 are existent (i.e. are finite and definite) at x = a and if 

(i) lim
ℎ→0

𝑓(𝑎 − ℎ) = lim
ℎ→0

𝑓(𝑎 + ℎ) ≠ 𝑓(𝑎) Then f(x) is said to have first kind                           

removable discontinuity. This kind of discontinuity can be removed by putting  

𝑓(𝑎) = lim
𝑥→𝑎

𝑓(𝑥). 

(ii) lim
ℎ→0

𝑓(𝑎 − ℎ) ≠ lim
ℎ→0

𝑓(𝑎 + ℎ) Then f(x) is said to have find kind non-removable discontinuity. 

The value lim
ℎ→0

𝑓(𝑎 + ℎ) − lim
ℎ→0

𝑓(𝑎 − ℎ)  is called jump discontinuity of f(x) at  

x = a. 

Discontinuity of 2nd kind: If at least one of lim
ℎ→0

𝑓(𝑎 + ℎ) and lim
ℎ→0

𝑓(𝑎 − ℎ) is  

non –existent or infinite then f(x) is said to have discontinuity of 2nd kind at x = a. 

Illustration  

 Show the function,  

𝑓(𝑥) = {
𝑒1 𝑥⁄ − 1

𝑒1 𝑥⁄ + 1
,𝑤ℎ𝑒𝑛 𝑥 ≠ 0

0,𝑤ℎ𝑒𝑛 𝑥 = 0
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has non-removable discontinuity at x = 0. 

Solution  

 We have,  

𝑓(𝑥) = {
𝑒1 𝑥⁄ − 1

𝑒1 𝑥⁄ + 1
,𝑤ℎ𝑒𝑛 𝑥 ≠ 0

0,𝑤ℎ𝑒𝑛 𝑥 = 0

 

 RHL at x = 0, let x = 0 + h 

⇒ lim
𝑥→0+

𝑓(𝑥) = lim
ℎ→0

𝑓(0 + ℎ) = lim
ℎ→0

𝑒
1
0+ℎ − 1

𝑒
1
0+ℎ + 1

= lim
ℎ→0

𝑒1 ℎ⁄ − 1

𝑒1 ℎ⁄ + 1
 

⇒ lim
𝑥→0+

𝑓(𝑥) = lim
ℎ→0

1 −
1
𝑒1 ℎ⁄

1 +
1
𝑒1 ℎ⁄

 

⇒ lim
𝑥→0+

𝑓(𝑥) =
1 − 0

1 + 0
= 1 [𝑎𝑠 ℎ → 0;

1

ℎ
→ ∞ ⇒ 𝑒1 ℎ⁄ → ∞;

1

𝑒1 ℎ⁄
→ 0] 

∴ lim
𝑥→0+

𝑓(𝑥) = 1 

Again, LHL at x = 0, let x = 0-h 

⇒ lim
𝑥→0−

𝑓(𝑥) = lim
ℎ→0

𝑓(0 − ℎ) = lim
ℎ→0

𝑒−1 ℎ⁄ − 1

𝑒−1 ℎ⁄ + 1
=
0 − 1

0 + 1
= −1 

[𝑎𝑠 ℎ → 0; 𝑒−1 ℎ⁄ → 0] 

⇒ lim
𝑥→0−

𝑓(𝑥) = −1 

⇒ lim
𝑥→0+

𝑓(𝑥) ≠ lim
𝑥→0−

𝑓(𝑥). 

Thus, f(x) has non-removable discontinuity. 

 

Illustration 

𝑆ℎ𝑜𝑤 𝑓(𝑥) =
1

|𝑥|
 

has discontinuity of second kind at x = 0. 

Solution  

Here,  

                    𝑓(𝑥) =
1

|𝑥|
= ∞ 

Which shows function has discontinuity 

of second kind.  

 

 

Graphically 

 Here, the graph is broken at x = 0 as 𝑥 → 0 ⇒ 𝑓(𝑥) → ∞ 

 Therefore, f(x) has discontinuity of second kind.  
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Jump discontinuity 

 A function f(x) is said to have a jump discontinuity at a point x = a if,  

lim
𝑥→𝑎−

𝑓(𝑥) ≠ lim
𝑥→𝑎+

𝑓(𝑥) 

And f(a) may be equal to either of previous limits.  

Illustration  

 𝑓(𝑥) = [𝑥]; [ ] denotes greatest integer has jump discontinuity at all integer values.  

 

Properties of continuity function  

 Theorem (i): If the functions f(x) and g(x) are continuous at a point x = a then the sum 

                                    ∅ = 𝑓(𝑥) + 𝑔(𝑥) is also continuous at that point x = a. 

 Proof :          Since f(x) and g(x) are continuous at a point x = a we can write  

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) 𝑎𝑛𝑑 lim
𝑥→𝑎

𝑔(𝑥) = 𝑔(𝑎) 

  Now  

lim
𝑥→𝑎

∅(𝑥) = lim
𝑥→𝑎

{𝑓(𝑥) + 𝑔(𝑥)} 

⇒ lim
𝑥→𝑎

𝑓(𝑥) + lim
𝑥→𝑎

𝑔(𝑥) 

(𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒𝑜𝑟𝑒𝑚𝑠 𝑜𝑛 𝑙𝑖𝑚𝑖𝑡) 

⇒ 𝑓(𝑎) + 𝑔(𝑎) = ∅(𝑎) 

  Thus, the function ∅(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) is continuous.  

  Similarly, we can prove the following theorems 

 Theorem (ii): The product to two continuous functions is a continuous function.  

 Theorem (iii): The ratio of two continuous functions is a continuous function, provided the  

  denominator does not vanish at the point under consideration. 

 Theorem (iv): If u = g(x) is continuous at x = a and f(u) is continuous at the point u0=g(a), then  

  the composite function f{g(x)} is continuous at the point x = a. 

 

Illustration  

 Discuss the continuity of the function,  

𝑓(𝑥) = lim
𝑛→∞

ln(2 + 𝑥) − 𝑥2𝑛 sin 𝑥

1 + 𝑥2𝑛
 𝑎𝑡 𝑥 = 1. 

Solution  

 We have,  

𝑓(1) = lim
𝑛→∞

ln 3 − sin 1

2
=
1

2
(ln 3 − sin 1)      … . (𝑖) 

 We know that,  

lim
𝑛→∞

𝑥2𝑛 = {
0, 𝑖𝑓 𝑥2 < 1

∞, 𝑖𝑓 𝑥2 > 1
 

  for 𝑥2 < 1, we have 
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𝑓(𝑥) = lim
𝑛→∞

ln(2 + 𝑥) − 𝑥2𝑛 sin 𝑥

1 + 𝑥2𝑛
→ ln(2 + 𝑥) = ln 3 

 Again for 𝑥2 > 1, we have  

𝑓(𝑥) = lim
𝑛→∞

𝑥1 2𝑛⁄ ln(2 + 𝑥) − sin 𝑥

1 +
1
𝑥2𝑛

→ −sin(𝑥) 

 Here, as 𝑥 → 1 

lim
𝑥→1−

𝑓(𝑥) = ln(3)  𝑎𝑛𝑑 lim
𝑥→1+

𝑓(𝑥) = − sin 1 

 So,  

lim
𝑥→1−

𝑓(𝑥) ≠ lim
𝑥→1+

𝑓(𝑥). 

 Therefore, f(x) is not continuous at x = 1. 

Illustration  

 Let  

𝑓(𝑥) = {
{1 + |sin 𝑥|}

𝑎
|sin 𝑥|;  − 𝜋 6⁄ < 𝑥 < 0
𝑏;    𝑥 = 0

𝑒
𝑡𝑎𝑛2𝑥
tan3𝑥; 0 < 𝑥 < 𝜋 6⁄

 

 Determine a and b such that f(x) is continuous at x = 0. 

Solution  

 Since f is continuous at x = 0. 

 Therefore, RHL = LHL = f(0) 

 RHL at x = 0 

lim
𝑥→0+

𝑓(𝑥) = lim
ℎ→0

𝑓(0 + ℎ) = lim
ℎ→0

𝑒tan2ℎ/ tan3ℎ 

⇒ lim
ℎ→0

𝑒
tan2ℎ
2ℎ

.
3ℎ

tan3ℎ
.
2
3 = 𝑒2 3⁄          … . (𝑖) 

 Again LHL at x = 0: 

lim
𝑥→0−

𝑓(𝑥) = lim
ℎ→0

𝑓(0 − ℎ) = lim
ℎ→0
{1 + |sin(0 − ℎ)|}𝑎/|sin(0−ℎ)| 

⇒ lim
ℎ→0
{1 + |sin ℎ|}𝑎/|sin ℎ| 

⇒ 𝑒
lim
ℎ→0

|sinℎ|.
𝑎

|sin ℎ| = 𝑒𝑎          … . (𝑖𝑖) 

 And  

𝑓(0) = 𝑏.                                  … . (𝑖𝑖𝑖) 

 Thus,  

𝑒2 3⁄ = 𝑒𝑎 = 𝑏 ⇒ 𝑎 = 2 3⁄  𝑎𝑛𝑑 𝑏 = 𝑒2/3 

 

Illustration  

 Find the points of discontinuity of  

𝑦 =
1

𝑢2 + 𝑢 − 2
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 𝑤ℎ𝑒𝑟𝑒 𝑢 =
1

𝑥 − 1
 

Solution  

 The function 𝑢 = 𝑓(𝑥) =
1

𝑥−1
 is discontinuous at the point x = 1.        …(i) 

 The function  

𝑦 = 𝑔(𝑥) =
1

𝑢2 + 𝑢 − 2
=

1

(𝑢 + 2)(𝑢 − 1)
 

 is discontinuous at 𝑢 = −2 and 𝑢 = 1. 

 When  

𝑢 = −2,
1

𝑥 − 1
= 𝑢 = −2 

⇒ 𝑥 − 1 = −
1

2
⇒ 𝑥 =

1

2
         … (𝑖𝑖) 

 When  

𝑢 = 1,
1

𝑥 − 1
= 𝑢 = 1 

⇒ 𝑥 − 1 = 1 

⇒ 𝑥 = 2                                     … (𝑖𝑖𝑖) 

 Hence, the composite function 𝑦 = 𝑔(𝑓(𝑥)) is discontinuous at three points 𝑥 = 1 2⁄ , 1, 2. 

A list of continuous functions 

              Function f(x) Interval in which f(x) is continuous 

1. 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 (−∞,∞) 

2. 𝑥𝑛 , 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ≥ 0 (−∞,∞) 

3. 𝑥−𝑛, 𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (−∞,∞) − {0} 

4. |𝑥 − 𝑎| (−∞,∞) 

5. 𝑝(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 +⋯+ 𝑎𝑛 (−∞,∞) 

6. 
𝑝(𝑥)

𝑞(𝑥)
, 𝑤ℎ𝑒𝑟𝑒 𝑝(𝑥) 𝑎𝑛𝑑 𝑞(𝑥)𝑎𝑟𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑖𝑛 𝑥  (−∞,∞) − {𝑥: 𝑞(𝑥) = 0} 

7. sin 𝑥 (−∞,∞) 

8. cos 𝑥 (−∞,∞) 

9. tan 𝑥 (−∞,∞) − {(2𝑛 + 1) 𝜋 2⁄ : 𝑛 ∈ 𝐼} 

10. cot 𝑥 (−∞,∞) − {𝑛𝜋: 𝑛 ∈ 𝐼} 

11. sec 𝑥 (−∞,∞) − {(2𝑛 + 1) 𝜋 2⁄ : 𝑛 ∈ 𝐼} 

12. 𝑐𝑜𝑠𝑒𝑐 𝑥 (−∞,∞) − {𝑛𝜋: 𝑛 ∈ 𝐼} 

13. 𝑒𝑥 (−∞,∞) 

14. log𝑒 𝑥 (0,∞)0  

  

Differentiability 

Before introducing the concept and condition of differentiability, it is important to know differentiation and the concept of differentiation. 

Differential coefficient of a function y=f(x) is  
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written as  

𝑑

𝑑𝑥
[𝑓(𝑥)] 𝑜𝑟 𝑓 ′(𝑥) 𝑜𝑟 𝑓(1)(𝑥) 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 

𝑓 ′(𝑥) = lim
h→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 

f’(x) represents nothing but ratio by which 

f(x) changes for small change is x and can  be 

understood as 

𝑓 ′(𝑥) = lim
∆x→0

(
∆𝑦

∆𝑥
) =

𝑦

𝑥
  

 

Then f’(x) represents slope of the tangent drawn at point ‘x’ of the curve f(x) . 

Let us understand the geometrical meaning of differentiation:  

Slope of PQ 

𝑃𝑄 =
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

 

⇒
(𝑦 + ∆y) − 𝑦

(𝑥 + ∆𝑥) − 𝑥
 𝑜𝑟
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

(𝑥 + ∆𝑥) − 𝑥
 

⇒
∆𝑦

∆𝑥
=
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

Let point Q approach point P , along the curve =y=f(x) i.e. ∆𝑥 → 0 . Then, we observe graphically that the  

slope of chord PQ becomes the slope of the tangent at the point P, which is written as   

𝑑𝑦

𝑑𝑥
 𝑜𝑟 𝑓 ′(𝑥+) 

 Since, point Q is approaching point P from the Right Hand side, we obtain f’(x) as follows: 

𝑓 ′(𝑥) = lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

(Right hand derivative) 

Similarly, 

𝑓 ′(𝑥−) = lim
∆𝑥→0

𝑓(𝑥 − ∆𝑥) − 𝑓(𝑥)

−∆𝑥
 , ∆𝑥 > 0 

(Left hand derivative) 

Note: For a function to be differentiable at x=a, we should have 𝑓 ′(𝑎−) = 𝑓 ′(𝑎+)  i.e. 

lim
ℎ→0

𝑓(𝑎 − ℎ) − 𝑓(𝑎)

−ℎ
= lim

h→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 

  

From the above graphs m one must not infer that 

a curve is non-differentiable only at points 

discontinuity. Non differentiability conditions 

also arise when the curve is continuous and the 

curve suddenly changes direction. The easiest 
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example of a curve being continuous and non-

differentiable is  

𝑦 = |𝑥| 𝑎𝑡 𝑥 = 0. However when there is a 

smooth change or gradual change in slope or 

trajectory of curve the derivative exists. 

 

 

 

 

 

  

 

  

 

 

 

Few more illustrations are given below: 

Refer to the following graphs: 

  

 

 

 Fig. (I) 

Fig (II) Fig (III) 

 

Fig (VI) 
Fig (V) 

 

In figure (i), f’(a) exists and is finite. In figure (ii) both 𝑓’(𝑎−) 𝑎𝑛𝑑 𝑓 ′(𝑎+)  exist but they are not  

equal. Hence f(a) does not exist. Figure (iii) and (iv) have infinite derivatives, i.e. 

 𝑓 ′(𝑎) = +∝ 𝑎𝑛𝑑 𝑓 ′(𝑎) = −∝ respectivly. In case of figure (v) we have  

 𝑓 ′(𝑎−) = +∝ 𝑎𝑛𝑑 𝑓 ′(𝑎+) = −∝ f’(a) does not exist.  

 

Illustration 
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Let [.] denotes the greatest integer function and 𝑓(𝑥) = [tan2 𝑥], then 

(𝑎) lim
𝑥→0

𝑓(𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 (𝑏)𝑓(𝑥)𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 = 0 

(𝑐) 𝑓(𝑥) 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑥 = 0 (𝑑)𝑓′(0) = 1 

Solution 

Here [.] denotes the greatest integral function, thus  

As 

−45𝑜 < 𝑥 < 45𝑜 

⇒ tan(−45𝑜) < tan 𝑥 < tan 450 

⇒ −1 < tan 𝑥 < 1 

⇒ 0 < tan2 𝑥 < 1 

Hence  

𝑓(𝑥) = [tan2 𝑥] = 0 

Hence, 𝑓(𝑥)is zero for all values of x from (−45𝑜)to (45𝑜).Thus, 𝑓(𝑥) exists when x0 and  

also it is continuous at x =0, f (x) is differentiable at x = 0 and has a value 0.  

 

Illustration  

 Show that the function 𝑓(𝑥) = {
𝑥2 sin (

1

𝑥
) , 𝑖𝑓 𝑥 ≠ 0

0   , 𝑖𝑓 𝑥 = 0
  is differentiable at x=0 and f’(0)=0  

Solution   

 We have, 

(𝐿𝐻𝐷 𝑎𝑡 𝑥 = 0) = 𝑙𝑖𝑚𝑥→0−
𝑓(𝑥) − 𝑓(0)

𝑥 − 0
 

⇒ lim
ℎ→0

𝑓(0 − ℎ) − 𝑓(0)

0 − ℎ − 0
 

⇒ lim
ℎ→0

𝑓(−ℎ) − 𝑓(0)

−ℎ
 

⇒ lim
ℎ→0

(−ℎ)2 sin (
1
−ℎ
) − 0

−ℎ
 

⇒ lim
ℎ→0

ℎ sin (
1

ℎ
) 

⇒ 0 × (𝑎𝑛 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 1 𝑎𝑛𝑑 1) 

⇒ 0 

(𝑅𝐻𝐷 𝑎𝑡 𝑥 = 0) = 𝑙𝑖𝑚𝑥→0+
𝑓(𝑥) − 𝑓(0)

𝑥 − 0
 

⇒ lim
ℎ→0

𝑓(0 − ℎ) − 𝑓(0)

0 + ℎ − 0
 

⇒ lim
ℎ→0

𝑓(−ℎ) − 𝑓(0)

ℎ
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⇒ lim
ℎ→0

(ℎ)2 sin (
1
−ℎ
) − 0

ℎ
 

⇒ lim
ℎ→0

ℎ sin (
1

ℎ
) 

⇒ 0 × (𝑎𝑛 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 1 𝑎𝑛𝑑 1) 

⇒ 0 

∴ (𝐿𝐻𝐷 𝑎𝑡 𝑥 = 0) = (𝑅𝐻𝐷 𝑎𝑡 𝑥 = 0) = 0 . 

𝑆𝑜 , 𝑓(𝑥) 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑓′(0) = 0 

 

Illustration  

Discuss the differentiability of  

𝑓(𝑥) = {
𝑥𝑒− (

1

|𝑥|
+
1

𝑥
)

0         , 𝑥 = 0

 , 𝑥 ≠ 0  𝑎𝑡 𝑥 = 0 

Solution  

 We have,𝑓(𝑥) =

{
 

 𝑥𝑒
− (

1

𝑥
+
1

𝑥
) = 𝑥𝑒−2/𝑥 , 𝑥 ≥ 0

𝑥𝑒− (
−1

𝑥
+
1

𝑥
) = 𝑥 , 𝑥 < 0

0                                , 𝑥 = 0

 

Now, 

(𝐿𝐻𝐷 𝑎𝑡 𝑥 = 0) = lim
𝑥→0−

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
 

⇒ lim
𝑥→0

𝑥 − 0

𝑥 − 0
= 1[∵ 𝑓(𝑥) = 𝑥 𝑓𝑜𝑟 𝑥 < 0 𝑎𝑛𝑑 𝑓(0) = 0 ] 

And  

(𝑅𝐻𝐷 𝑎𝑡 𝑥 = 0) = lim
𝑥→0+

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
 

⇒ lim
𝑥→0

𝑥𝑒−2/𝑥 − 0

𝑥
= 1[∵ 𝑓(𝑥) = 𝑥 𝑒−2/𝑥𝑓𝑜𝑟 𝑥 > 0 𝑎𝑛𝑑 𝑓(0) = 0 ] 

⇒ lim
𝑥→0

𝑒−2/𝑥 = 0 

∴ (𝐿𝐻𝐷 𝑎𝑡 𝑥 = 0 ) ≠ (𝑅𝐻𝐷 𝑎𝑡 𝑥 = 0) 

𝑠𝑜 , 𝑓(𝑥) 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑥 = 0 

 

 

 

 

 

 

 

 


