Chapter 3

Continuity and Difierentiability

Day 1

Continuity of a function

A function $f(x)$ is a said to be continuous at $x=a$; where $a \in$ domain of $f(x)$
If

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

Graphical View

(i) $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exists but are not equal.

Here,

$$
\begin{aligned}
\lim _{x \rightarrow a^{-}} f(x) & =l_{1} \\
\lim _{x \rightarrow a^{+}} f(x) & =l_{2}
\end{aligned}
$$

$\therefore \lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow \mathrm{a}^{+}} f(x)$ exists but are not equal.
Thus, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=\mathrm{a}$.
It does not matter whether $f(a)$ exists or not.

Illustration

If $f(x)=\left\{\begin{array}{c}2 x+3, \text { when } x<0 \\ 0, \text { when } x=0 . \quad \text { Discuss the continuity. } \\ x^{2}+3, \text { when } x>0\end{array}\right.$

Solution

Here,

$$
f(x)=\left\{\begin{array}{c}
2 x+3, \text { when } x<0 \\
0, \text { when } x=0 \\
x^{2}+3, \text { when } x>0
\end{array}\right.
$$

\therefore RHL at $\mathrm{x}=0$, let $\mathrm{x}=0+\mathrm{h}$
i.e.,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0}\left\{(0+h)^{2}+3\right\}=3 \\
& \Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=3
\end{aligned}
$$

Again, LHL at $\mathrm{x}=0$,
Let $\mathrm{x}=0$-h
i.e.,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0}\{2(0-h)+3\}=3 \\
& \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=3
\end{aligned}
$$

But $f(0)=0$
Therefore,

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=3 \neq f(0)
$$

Thus, $\mathrm{f}(\mathrm{x})$ is discontinuous at $x \rightarrow 0$

Graphically:-

Here,

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)=3 \\
\lim _{x \rightarrow 0^{+}} f(x)=3 \\
f(x)=0
\end{gathered}
$$

Thus,

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=3 \neq f(0)
$$

Hence, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$

Illustration

If $f(x)=\frac{x^{2}-1}{x-1}$. Discuss the continuity at $x \rightarrow 1$.

Solution

Here,

$$
\begin{gathered}
f(x)=\frac{x^{2}-1}{x-1} \\
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)}=\lim _{x \rightarrow 1}(x+1)=2
\end{gathered}
$$

But $\mathrm{f}(1)=0 / 0$ (in determined form)
$\therefore \mathrm{f}(1)$ is not defined at $\mathrm{x}=1$
Hence, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=1$

Graphically

Which shows,

$$
\lim _{x \rightarrow 1} f(x)=2
$$

But $f(1)$ is not defined.
So, $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=1$.

Illustration

Discuss the continuity of $f(x)=\left[\tan ^{-1} x\right]$.

Solution

We know $y=\tan ^{-1} x$ could be plotted as;

Thus, $f(x)=\left[\tan ^{-1} x\right]$ could b plotted as;

Which clearly represents graph is breaked at
$\{-\tan 1,0, \tan 1\}$
$\therefore \mathrm{f}(\mathrm{x})$ is not continuous when $x \in\{-\tan 1,0, \tan 1\}$

Continuity at end points

Let a function $y=f(x)$ is defined on $[\mathrm{a}, \mathrm{b}]$.
Then the function $\mathrm{f}(\mathrm{x})$ is said to be continuous at the left end $\mathrm{x}=\mathrm{a}$ if

$$
f(a)=\lim _{x \rightarrow a^{+}} f(x)
$$

If $f(x)$ is said to be continuous at the right end $x=b$ if,

$$
f(b)=\lim _{x \rightarrow b^{-}} f(x)
$$

Kinds of Discontinuity

Let the point $x=$ a be the limit point in the domain of definition of $y=f(x)$.
Discontinuity of 1st kind: In this kind of discontinuity the RHL and LHL of the function $y=f(x)$ are existent (i.e. are finite and definite) at $\mathrm{x}=\mathrm{a}$ and if
(i) $\quad \lim _{h \rightarrow 0} f(a-h)=\lim _{h \rightarrow 0} f(a+h) \neq f(a)$ Then $\mathrm{f}(\mathrm{x})$ is said to have first kind removable discontinuity. This kind of discontinuity can be removed by putting

$$
f(a)=\lim _{x \rightarrow a} f(x)
$$

(ii) $\lim _{h \rightarrow 0} f(a-h) \neq \lim _{h \rightarrow 0} f(a+h)$ Then $\mathrm{f}(\mathrm{x})$ is said to have find kind non-removable discontinuity. The value $\lim _{h \rightarrow 0} f(a+h)-\lim _{h \rightarrow 0} f(a-h)$ is called jump discontinuity of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{a}$.
Discontinuity of 2nd kind: If at least one of $\lim _{h \rightarrow 0} f(a+h)$ and $\lim _{h \rightarrow 0} f(a-h)$ is non -existent or infinite then $f(x)$ is said to have discontinuity of 2nd kind at $x=a$.

Illustration

Show the function,

$$
f(x)=\left\{\begin{array}{c}
\frac{e^{1 / x}-1}{e^{1 / x}+1}, \text { when } x \neq 0 \\
0, \text { when } x=0
\end{array}\right.
$$

has non-removable discontinuity at $\mathrm{x}=0$.

Solution

We have,

$$
f(x)=\left\{\begin{array}{c}
\frac{e^{1 / x}-1}{e^{1 / x}+1}, \text { when } x \neq 0 \\
0, \text { when } x=0
\end{array}\right.
$$

\therefore RHL at $\mathrm{x}=0$, let $\mathrm{x}=0+\mathrm{h}$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} \frac{e^{\frac{1}{0+h}}-1}{e^{\frac{1}{0+h}}+1}=\lim _{h \rightarrow 0} \frac{e^{1 / h}-1}{e^{1 / h}+1} \\
& \Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} \frac{1-\frac{1}{e^{1 / h}}}{1+\frac{1}{e^{1 / h}}} \\
& \Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=\frac{1-0}{1+0}=1\left[\text { as } h \rightarrow 0 ; \frac{1}{h} \rightarrow \infty \Rightarrow e^{1 / h} \rightarrow \infty ; \frac{1}{e^{1 / h}} \rightarrow 0\right] \\
& \therefore \lim _{x \rightarrow 0^{+}} f(x)=1
\end{aligned}
$$

Again, LHL at $x=0$, let $x=0-h$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} \frac{e^{-1 / h}-1}{e^{-1 / h}+1}=\frac{0-1}{0+1}=-1 \\
& \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=-1 \\
& \Rightarrow \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x) .
\end{aligned}
$$

Thus, $\mathrm{f}(\mathrm{x})$ has non-removable discontinuity.

Illustration

$$
\text { Show } f(x)=\frac{1}{|x|}
$$

has discontinuity of second kind at $\mathrm{x}=0$.

Solution

Here,

$$
f(x)=\frac{1}{|x|}=\infty
$$

Which shows function has discontinuity of second kind.

Graphically

Here, the graph is broken at $\mathrm{x}=0$ as $x \rightarrow 0 \Rightarrow f(x) \rightarrow \infty$
Therefore, $\mathrm{f}(\mathrm{x})$ has discontinuity of second kind.

Jump discontinuity

A function $\mathrm{f}(\mathrm{x})$ is said to have a jump discontinuity at a point $\mathrm{x}=$ a if,

$$
\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)
$$

And $f(a)$ may be equal to either of previous limits.

Illustration

$f(x)=[x] ;[]$ denotes greatest integer has jump discontinuity at all integer values.

Properties of continuity function

Theorem (i): If the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are continuous at a point $\mathrm{x}=$ a then the sum $\emptyset=f(x)+g(x)$ is also continuous at that point $\mathrm{x}=\mathrm{a}$.
Proof: \quad Since $f(x)$ and $g(x)$ are continuous at a point $x=$ a we can write

$$
\lim _{x \rightarrow a} f(x)=f(a) \text { and } \lim _{x \rightarrow a} g(x)=g(a)
$$

Now

$$
\begin{array}{lr}
\lim _{x \rightarrow a} \emptyset(x)=\lim _{x \rightarrow a}\{f(x)+g(x)\} & \\
& \Rightarrow \lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
\Rightarrow f(a)+g(a)=\emptyset(a) & \text { (using theorems on limit) }
\end{array}
$$

Thus, the function $\emptyset(x)=f(x)+g(x)$ is continuous.
Similarly, we can prove the following theorems
Theorem (ii): The product to two continuous functions is a continuous function.
Theorem (iii): The ratio of two continuous functions is a continuous function, provided the denominator does not vanish at the point under consideration.
Theorem (iv): If $u=g(x)$ is continuous at $x=a$ and $f(u)$ is continuous at the point $u 0=g(a)$, then the composite function $f\{g(x)\}$ is continuous at the point $x=a$.

Illustration

Discuss the continuity of the function,

$$
f(x)=\lim _{n \rightarrow \infty} \frac{\ln (2+x)-x^{2 n} \sin x}{1+x^{2 n}} \text { at } x=1 .
$$

Solution

We have,

$$
\begin{equation*}
f(1)=\lim _{n \rightarrow \infty} \frac{\ln 3-\sin 1}{2}=\frac{1}{2}(\ln 3-\sin 1) \tag{i}
\end{equation*}
$$

We know that,

$$
\lim _{n \rightarrow \infty} x^{2 n}=\left\{\begin{array}{l}
0, \text { if } x^{2}<1 \\
\infty, \text { if } x^{2}>1
\end{array}\right.
$$

\therefore for $x^{2}<1$, we have

$$
f(x)=\lim _{n \rightarrow \infty} \frac{\ln (2+x)-x^{2 n} \sin x}{1+x^{2 n}} \rightarrow \ln (2+x)=\ln 3
$$

Again for $x^{2}>1$, we have

$$
f(x)=\lim _{n \rightarrow \infty} \frac{x^{1 / 2 n} \ln (2+x)-\sin x}{1+\frac{1}{x^{2 n}}} \rightarrow-\sin (x)
$$

Here, as $x \rightarrow 1$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\ln (3) \text { and } \lim _{x \rightarrow 1^{+}} f(x)=-\sin 1
$$

So,

$$
\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)
$$

Therefore, $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$.

Illustration

Let

$$
f(x)=\left\{\begin{array}{c}
\{1+|\sin x|\}^{\frac{a}{\sin x \mid} ;-\pi / 6<x<0} \begin{array}{c}
b ; \quad x=0 \\
e^{\frac{\tan 2 x}{\tan 3 x} ; 0<x<\pi / 6}
\end{array} \text { 有 }
\end{array}\right.
$$

Determine a and b such that $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.

Solution

Since f is continuous at $\mathrm{x}=0$.
Therefore, $\mathrm{RHL}=\mathrm{LHL}=\mathrm{f}(0)$
RHL at $\mathrm{x}=0$

$$
\begin{align*}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} e^{\tan 2 h / \tan 3 h} \\
& \Rightarrow \lim _{h \rightarrow 0} e^{\frac{\tan 2 h}{2 h} \cdot \frac{3 h}{\tan 3 h} \cdot \frac{2}{3}}=e^{2 / 3} \tag{i}
\end{align*}
$$

Again LHL at $\mathrm{x}=0$:

$$
\begin{align*}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0}\{1+|\sin (0-h)|\}^{a /|\sin (0-h)|} \\
\Rightarrow & \lim _{h \rightarrow 0}\{1+|\sin h|\}^{a /|\sin h|} \\
\Rightarrow & e^{\lim _{h \rightarrow 0}|\sin h| \cdot \left\lvert\, \frac{a}{|\sin h|}\right.}=e^{a} \quad \ldots .(i i) \tag{ii}
\end{align*}
$$

And

$$
\begin{equation*}
f(0)=b \tag{iii}
\end{equation*}
$$

Thus,

$$
e^{2 / 3}=e^{a}=b \Rightarrow a=2 / 3 \text { and } b=e^{2 / 3}
$$

Illustration

Find the points of discontinuity of
$y=\frac{1}{u^{2}+u-2}$
where $u=\frac{1}{x-1}$

Solution

The function $u=f(x)=\frac{1}{x-1}$ is discontinuous at the point $\mathrm{x}=1$.
The function

$$
y=g(x)=\frac{1}{u^{2}+u-2}=\frac{1}{(u+2)(u-1)}
$$

is discontinuous at $u=-2$ and $u=1$.
When

$$
\begin{align*}
& u=-2, \frac{1}{x-1}=u=-2 \\
& \Rightarrow x-1=-\frac{1}{2} \Rightarrow x=\frac{1}{2} \tag{ii}
\end{align*}
$$

When

$$
\begin{align*}
& u=1, \frac{1}{x-1}=u=1 \\
& \Rightarrow x-1=1 \\
& \Rightarrow x=2 \tag{iiii}
\end{align*}
$$

Hence, the composite function $y=g(f(x))$ is discontinuous at three points $x=1 / 2,1,2$.

A list of continuous functions

Function $\mathrm{f}(\mathrm{x})$

1. constant c
2. x^{n}, n is an integer ≥ 0
3. x^{-n}, n is a positive integer
4. $|x-a|$
5. $p(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a^{n}$
6. $\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in x
7. $\sin x$
8. $\cos x$
9. $\tan x$
10. $\cot x$
11. $\sec x$
12. $\operatorname{cosec} x$
13. e^{x}
14. $\log _{e} x$

Interval in which $f(x)$ is continuous

$$
\begin{aligned}
& (-\infty, \infty) \\
& (-\infty, \infty) \\
& (-\infty, \infty)-\{0\} \\
& (-\infty, \infty) \\
& (-\infty, \infty) \\
& (-\infty, \infty)-\{x: q(x)=0\} \\
& (-\infty, \infty) \\
& (-\infty, \infty) \\
& (-\infty, \infty)-\{(2 n+1) \pi / 2: n \in I\} \\
& (-\infty, \infty)-\{n \pi: n \in I\} \\
& (-\infty, \infty)-\{(2 n+1) \pi / 2: n \in I\} \\
& (-\infty, \infty)-\{n \pi: n \in I\} \\
& (-\infty, \infty) \\
& (0, \infty) 0
\end{aligned}
$$

Differentiability

Before introducing the concept and condition of differentiability, it is important to know differentiation and the conce Differential coefficient of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is
written as
$\frac{d}{d x}[f(x)]$ or $f^{\prime}(x)$ or $f^{(1)}(x)$ as defined by

Let us understand the geometrical meaning of differentiation:
Slope of PQ

$$
\begin{aligned}
& P Q=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \\
& \Rightarrow \frac{(y+\Delta y)-y}{(x+\Delta x)-x} \text { or } \frac{f(x+\Delta x)-f(x)}{(x+\Delta x)-x} \\
& \Rightarrow \frac{\Delta y}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}
\end{aligned}
$$

Let point Q approach point P , along the curve $=\mathrm{y}=\mathrm{f}(\mathrm{x})$ i.e. $\Delta x \rightarrow 0$. Then, we observe graphically that the slope of chord PQ becomes the slope of the tangent at the point P , which is written as

$$
\frac{d y}{d x} \text { or } f^{\prime}\left(x^{+}\right)
$$

Since, point Q is approaching point P from the Right Hand side, we obtain $f^{\prime}(\mathrm{x})$ as follows:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

(Right hand derivative)
Similarly,

$$
f^{\prime}\left(x^{-}\right)=\lim _{\Delta x \rightarrow 0} \frac{f(x-\Delta x)-f(x)}{-\Delta x}, \Delta x>0
$$

(Left hand derivative)
Note: For a function to be differentiable at $\mathrm{x}=\mathrm{a}$, we should have $f^{\prime}\left(a^{-}\right)=f^{\prime}\left(a^{+}\right)$i.e.

$$
\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

From the above graphs m one must not infer that a curve is non-differentiable only at points discontinuity. Non differentiability conditions also arise when the curve is continuous and the curve suddenly changes direction. The easiest

example of a curve being continuous and non-
differentiable is
$y=|x|$ at $x=0$. However when there is a smooth change or gradual change in slope or trajectory of curve the derivative exists.

Few more illustrations are given below:

Refer to the following graphs:

In figure (i), $\mathrm{f}^{\prime}(\mathrm{a})$ exists and is finite. In figure (ii) both $f^{\prime}\left(a^{-}\right)$and $f^{\prime}\left(a^{+}\right)$exist but they are not equal. Hence $f(a)$ does not exist. Figure (iii) and (iv) have infinite derivatives, i.e.
$f^{\prime}(a)=+\propto$ and $f^{\prime}(a)=-\propto$ respectivly. In case of figure (v) we have
$f^{\prime}\left(a^{-}\right)=+\propto$ and $f^{\prime}\left(a^{+}\right)=-\propto f^{\prime}(a)$ does not exist.

Let [.] denotes the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$, then
(a) $\lim _{x \rightarrow 0} f(x)$ does not exists
(b) $f(x)$ is continuous at $x=0$
(c) $f(x)$ is not differentiable at $x=0$
$(d) f^{\prime}(0)=1$

Solution

Here [.] denotes the greatest integral function, thus
As

$$
\begin{aligned}
& -45^{\circ}<x<45^{\circ} \\
& \Rightarrow \tan \left(-45^{\circ}\right)<\tan x<\tan 45^{\circ} \\
& \Rightarrow-1<\tan x<1 \\
& \Rightarrow 0<\tan ^{2} x<1
\end{aligned}
$$

Hence

$$
f(x)=\left[\tan ^{2} x\right]=0
$$

Hence, $f(x)$ is zero for all values of x from $\left(-45^{\circ}\right)$ to $\left(45^{\circ}\right)$.Thus, $f(x)$ exists when $\mathrm{x} \rightarrow 0$ and also it is continuous at $\mathrm{x}=0, f(x)$ is differentiable at $\mathrm{x}=0$ and has a value 0 .

Illustration

Show that the function $f(x)=\left\{\begin{array}{c}x^{2} \sin \left(\frac{1}{x}\right), \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$ is differentiable at $\mathrm{x}=0$ and $\mathrm{f}^{\prime}(0)=0$

Solution

We have,

$$
\begin{aligned}
& (\text { LHD at } x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0-h-0} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{-h} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{(-h)^{2} \sin \left(\frac{1}{-h}\right)-0}{-h} \\
& \Rightarrow \lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right) \\
& \Rightarrow 0 \times(\text { an oscillating number between }-1 \text { and } 1) \\
& \Rightarrow 0 \\
& (\text { RHD at } x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0+h-0} \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{h}
\end{aligned}
$$

$\Rightarrow \lim _{h \rightarrow 0} \frac{(h)^{2} \sin \left(\frac{1}{-h}\right)-0}{h}$
$\Rightarrow \lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)$
$\Rightarrow 0 \times($ an oscillating number between -1 and 1$)$
$\Rightarrow 0$
$\therefore($ LHD at $x=0)=($ RHD at $x=0)=0$.
So , $f(x)$ is differentiable at $x=0$ and $f^{\prime}(0)=0$

Illustration

Discuss the differentiability of

$$
f(x)=\left\{\begin{array}{l}
x e^{-}\left(\frac{1}{|x|}+\frac{1}{x}\right), x \neq 0 \text { at } x=0 \\
0 \quad, x=0
\end{array}\right.
$$

Solution

We have, $f(x)=\left\{\begin{array}{c}x e^{-\left(\frac{1}{x}+\frac{1}{x}\right)=x e^{-2 / x},}, x \geq 0 \\ x e^{-}\left(\frac{-1}{x}+\frac{1}{x}\right)=x, x<0 \\ 0 \quad, x=0\end{array}\right.$
Now,

$$
\begin{aligned}
& (\text { LHD at } x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \\
\Rightarrow & \lim _{x \rightarrow 0} \frac{x-0}{x-0}=1[\because f(x)=x \text { for } x<0 \text { and } f(0)=0]
\end{aligned}
$$

And

$$
\begin{aligned}
& \quad(\text { RHD at } x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{x e^{-2 / x}-0}{x}=1\left[\because f(x)=x e^{-2 / x} \text { for } x>0 \text { and } f(0)=0\right] \\
& \Rightarrow \lim _{x \rightarrow 0} e^{-2 / x}=0 \\
& \therefore(\text { LHD at } x=0) \neq(\text { RHD at } x=0) \\
& \text { so , } f(x) \text { is not differentiable at } x=0
\end{aligned}
$$

