Chapter
 I

Fundamentals and Functions

Day 1

Fundamentals

Basic Definitions

(i) Natural numbers:-

$$
\mathrm{N}=\{1,2,3,4, \ldots \ldots \ldots\}
$$

(ii) Integers:-

Denoted by I or Z. $\{\ldots \ldots,-3,-2,-1,0,1,2,3, \ldots \ldots$.
(a) Positive integers by $I^{+}=\{1,2,3,4, \ldots \ldots .\}=$. natural numbers.
(b) Negative integers by $I^{-}=\{\ldots \ldots \ldots,-4,-3,-2,-1$,
(c) Non-negative integers: $\{0,1,2,3,4, \ldots \ldots \ldots\}=$. whole numbers
(d) Non-positive integers:
$\{\ldots \ldots .,-3,-2,-1,0\}$
(iii) Rational Numbers:-

All the numbers of the form p / q, where p and q are integers and $q \neq 0$ are called rational numbers and their set is denoted by Q .

$$
Q=\frac{p}{q} \text { such that } p, q \in I \text { and } q \neq 0 \text { and HCF of } p, q \text { is } 1 .
$$

(1) Every integer is a rational number as it could be written as

$$
Q=\frac{p}{q} \quad(\text { where } q=1)
$$

(2) All recurring decimals are rational numbers.

$$
Q=\frac{1}{3}=0.3333 \ldots \ldots
$$

(iv)Irrational Numbers:-

Those values which neither terminate nor could be expressed as recurring decimals are irrational numbers. i.e., it cannot be expressed as p / q form, and are denoted by Q^{c} (i.e., complement of Q).

$$
\sqrt{2}, 1+\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{-3}{\sqrt{2}}, \frac{2}{\sqrt{2}}, \sqrt{3}, 1+\sqrt{3}, \pm \frac{1}{\sqrt{3}}, \pi .
$$

\qquad etc.
(v) Real Numbers:-

The set which contain both rational and irrational are called real and is denoted by R.

$$
\begin{gathered}
R=Q \cup Q^{c} \\
\therefore R=\left\{\ldots \ldots-2,-1,0,1,2,3, \ldots \ldots, \frac{5}{6}, \frac{3}{4}, \frac{7}{9}, \frac{1}{3}, \frac{1}{7}, \frac{1}{5}, \ldots \ldots \ldots \sqrt{2}, \sqrt{3}, \pi, \ldots \ldots\right\}
\end{gathered}
$$

Question Practice Online

CLOSED AND OPEN INTERVALS

(i) Open-open interval:-

$$
\begin{aligned}
& =a<x<b \\
& =x \in(a, b) \\
& =1<x<2 \Rightarrow x \in(1,2)
\end{aligned}
$$

Illustration

$$
-2<2 x-1<2
$$

Solution

$$
\begin{aligned}
& =-1<2 x<3 \\
& =-\frac{1}{2}<x<\frac{3}{2} \\
& =x \in\left(-\frac{1}{2}, \frac{3}{2}\right)
\end{aligned}
$$

This solution can be graphed on a real line as;

(ii) Open -closed interval:-

$$
a<x \leq b \Rightarrow x \in(a, b]
$$

(iii) Closed-open interval:-

$$
\begin{aligned}
& a \leq x<b \Rightarrow x \in[a, b) \\
& x \in[a, b)
\end{aligned}
$$

(iv) Closed-closed interval:-

$$
a \leq x \leq b \Rightarrow x \in[a, b]
$$

Illustration

Solve the following equations:

$$
\frac{2 x-3}{4}+9 \geq+\frac{4 x}{3}+3
$$

Solution

$$
\begin{array}{ll}
\Rightarrow & \frac{2 x-3}{4}-\frac{4 x}{3} \geq 3-9 \\
\Rightarrow & \frac{3(2 x-3)-16 x}{12} \geq-6 \\
\Rightarrow & \frac{-10 x-9}{12} \geq-6 \\
\Rightarrow & -10 x-9 \geq-72 \\
\Rightarrow & -10 x \geq-63
\end{array}
$$

"as we know the inequality sign changes, if multiplied by (-ve)"

$$
\begin{aligned}
\therefore \quad & 10 x \leq 63 \\
= & x \leq \frac{63}{10}
\end{aligned}
$$

Hence, the solution set of the given in equation is $(-\infty, 63 / 10]$.

Modulus or Absolute Value Function

$$
y=|x|=\left\{\begin{array}{cc}
x, & x \geq 0 \\
-x, & x<0
\end{array}\right.
$$

Illustration

$|x|=2$
Solution
$|x|=2 \Rightarrow x= \pm 2$,
Which means, x is at a distance of 2 units from 0 which is certainly 2 and -2 .

Illustration

$|x|=-2$
Solution
$|x|=-2 \Rightarrow x$ has no solution.
As $|\mathrm{x}|$ is always positive or zero it can never be negative.
\therefore R.H.S > L.H.S
Illustration
$|x|<2$
Solution
$|x|<2$
It means that x is the number, which is at distance less than 2 from 0 .

Illustration

$|x|<-2$
Solution
$|x|<-2$
Which shows no solution.
As L.H.S. is non-negative and RHS is negative or $|\mathrm{x}|<-2$ does not possess any solution.

Illustration

$|x|>-2$
Solution
$|x|>-2$
We knows here L.H.S. ≥ 0 and R.H.S <0
\Rightarrow L.H.S. $>$ R.H.S.
i.e., above statement is true for all real x .
(as we know that non-negative number is always greater than negative.)

Illustration

$|x|>2$
Solution
$|x|>2$
It means that x is the number which is at distance greatest than 2 from 0 .

$$
x<-2 \text { or } x>2
$$

Generalised Results
(i):- For any real number x, we have

$$
x^{2}=|x|^{2}
$$

(ii):- For any real number x, we have

$$
\sqrt{x^{2}}=|x|
$$

(iii):- If a > 0 then:
(a) $x^{2} \leq a^{2} \Leftrightarrow|x| \leq a \Leftrightarrow-a \leq x \leq a$
(b) $x^{2}<a^{2} \Leftrightarrow|x|<a \Leftrightarrow-a<x<a$
(c) $x^{2} \geq a^{2} \Leftrightarrow|x| \geq a \Leftrightarrow x \leq-a$ or $x \geq a$
(d) $x^{2}>a^{2} \Leftrightarrow|x|>a \Leftrightarrow x<-a$ or $x>a$
(e) $a^{2} \leq x^{2} \leq b^{2} \Leftrightarrow a \leq|x| \leq b \Leftrightarrow x \in[-b,-a] \cup[a, b]$
(f) $a^{2}<x^{2}<b^{2} \Leftrightarrow a<|x|<b \Leftrightarrow x \in(-b,-a) \cup(a . b)$
(iv):- If a <0 then:
(a) $|x| \leq a \Rightarrow$ no solution.
(b) $|x| \geq a \Rightarrow$ all real numbers.

$$
\begin{aligned}
& (\mathbf{v}):-|\mathrm{x}+\mathrm{y}|=|\mathrm{x}|+|\mathrm{y}| \\
& \quad \Leftrightarrow(x \geq 0 \text { and } y \geq 0) \text { or }(x \leq 0 \text { and } y \leq 0) \\
& \quad \Leftrightarrow x y \geq 0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (vi):- }|x-y|=|x|-|y| \\
& \quad \Leftrightarrow(x \geq 0, y \geq 0 \text { and }|x| \geq|y|) \text { or }(x \leq 0, y \leq 0 \text { and }|x| \geq|y|) .
\end{aligned}
$$

(vii):- $|x \pm y| \leq|x|+|y|$
(viii):- $|x \pm y| \geq|x|-|y|$

Illustration

$$
\text { solve }|x-1| \leq 2
$$

Solution

$$
\begin{array}{cc}
\Rightarrow & |x-1| \leq 2 \\
\Rightarrow & -2 \leq x-1 \leq 2 \\
\Rightarrow & -2+1 \leq x \leq 2+1 \\
\Rightarrow & -1 \leq x \leq 3 \\
& x \in[-1,3] .
\end{array}
$$

Illustration

$$
1 \leq|x-1| \leq 3
$$

Solution

$$
\Rightarrow \quad-3 \leq(x-1) \leq-1 \text { or } 1 \leq(x-1) \leq 3
$$

i.e., the distance covered is between 1unit to 3 units.
$\Rightarrow \quad-2 \leq x \leq 0$ or $2 \leq x \leq 4$
Hence, the solution set of the given in equation is $x \in[-2,0] \cup[2,4]$

Illustration

$|x-1| \leq 5,|x| \geq 2$
Solution
i.e., $(-5 \leq x-1 \leq 5) \quad$ and $\quad(x \leq-2$ or $x \geq 2)$
i.e., $(-4 \leq x \leq 6) \quad$.....(i) and
($x \leq-2$ or $x \geq 2$)
(i) and (ii) could be graphically shown as;

Thus, the shaded portion i.e., common to both (i) and (ii) is the required region.
$\Rightarrow \quad x \in[-4,2] \cup[2,6]$.
Illustration

$$
|x-1|+|x-2| \geq 4
$$

Solution
On the L.H.S. of the given in equation we have two modulus,
So we should define each
Modulus, i.e., by equating to zero.

$$
\begin{aligned}
& |x-1|=\left\{\begin{array}{cl}
(x-1), & x \geq 1 \\
-(x-1), & x<1
\end{array}\right. \\
& |x-2|=\left\{\begin{array}{cl}
(x-2), & x \geq 2 \\
-(x-2), & x<2
\end{array}\right.
\end{aligned}
$$

Thus it gives three cases:
Case I:- When $-\infty<x<1$

$$
\begin{array}{cl}
& |x-1|+|x-2| \geq 4 \\
\Rightarrow & -(x-1)-(x-2) \geq 4 \\
\Rightarrow & -2 x+3 \geq 4 \\
\Rightarrow & -2 x \geq 1 \\
\Rightarrow & \quad x \leq-\frac{1}{2} \tag{i}
\end{array}
$$

But $-\infty<x<1$
\therefore solution set is $x \in\left(-\infty, \frac{1}{2}\right]$
Case II:-

$$
\begin{array}{cc}
& \text { When } 1 \leq x \leq 2 \\
& |x-1|+|x-2| \geq 4 \\
\Rightarrow & (x-1)-(x-2) \geq 4 \\
\Rightarrow & 1 \geq 4, \text { which is meaningless. } \\
\therefore & \quad \text { no solution for } x \in[1,2] \tag{ii}
\end{array}
$$

Case III:-

$$
\begin{array}{ll}
& \text { When } \mathrm{x}>2 \\
& |x-1|+|x-2| \geq 4 \\
\Rightarrow & (x-1)+(x-2) \geq 4 \\
\Rightarrow & 2 x-3 \geq 4 \\
\Rightarrow & x \geq \frac{7}{2} \\
\text { But } x>2 \tag{iii}
\end{array}
$$

\therefore Solution set is $\left[\frac{7}{2}, \infty\right)$
From (i), (ii) and (iii), we get,

$$
x \in\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{7}{2}, \infty\right) .
$$

Wavy Curve Method/Number Line Rule/ Sign Scheme For Rational Function

It is used to solve algebraic inequalities using following steps:
(i):- Put only odd power factors in numerator and denominator equal to zero separately.
(as for polynomial function only numerator $=0$, denominator $\neq 0$).
(ii):- Plot these points on number line in increasing order.
(iii):- Now check the coefficients of x and make them positive.
(iv):- Start the number line form right to lift taking sign of $f(x)$.
(v):- Check your answer should not contain a point for which $f(x)$ does not exists.

Illustration

Find the interval in which $f(x)$ is positive or negative,
$f(x)=(x-1)(x-2)(x-3)$

Solution

Here, $f(x)=(x-1)(x-2)(x-3)$ has all factors with odd powers so put them zero.
i.e., $x-1=0, x-2=0, x-3=0$,

We get,

$$
\mathrm{x}=1,2,3
$$

Plotting on number line we get,
$f(x)>0$ when $1<x<2$ and $x>3 \quad f(x)<0$ when $x<1$ and $2<x<3$

Illustration

Find the values of x for which
$f(x)=\frac{(x-2)^{2}(1-x)(x-3)^{3}(x-4)^{2}}{(x+1)} \leq 0$

Solution

Here,
$f(x)=\frac{(x-2)^{2}(1-x)(x-3)^{3}(x-4)^{2}}{(x+1)} \leq 0 \quad f(x)=-\frac{(x-2)^{2}(x-1)(x-3)^{3}(x-4)^{2}}{(x+1)} \geq(x \neq-1)$
Putting zero to $(x-1),(x-3)^{3},(x+1)$ as having odd powers and
neglecting $(x-2)^{2},(x-4)^{2}$.

We get,
$f(x) \leq 0$ when $-1<x \leq 1 \quad\{$ using (i) as $x \neq-1\}$

$$
\begin{aligned}
& =3 \leq x<\infty \\
& =x \in(-1,1] \cup[3, \infty)
\end{aligned}
$$

Question Practice Online

Fundamentals Of Quadratic Equations

We know every quadratic equation represents a parabola (explained in later part).
Thus,
(i):- If $a x^{2}+b x+c>0, \forall x \in R \Rightarrow a>0$ and $D<0$
(ii):- If $a x^{2}+b x+c<0, \forall x \in R \Rightarrow a<0$ and $D<0$

Illustration

Find a for which

$$
3 x^{2}+a x+3>0, \forall x \in R ?
$$

Solution

Here,

$$
\begin{array}{ll}
3 x^{2}+a x+3>0, \forall x \in R \\
\Rightarrow & D<0 \\
\Rightarrow & (a)^{2}-4(3)(3)<0 \\
\Rightarrow & a^{2}-36<0 \\
\Rightarrow & (a-6)(a+6)<0,
\end{array}
$$

Using number line rule as shown in figure,
Which shows

$$
\begin{aligned}
& -6<a<6 \\
& a \in(-6,6)
\end{aligned}
$$

Illustration

$$
x^{2}=4
$$

Solution

$$
\begin{array}{ll}
x^{2}=4 & \\
\Rightarrow & (x+2)(x-2)=0 \\
\Rightarrow & x=2,-2 .
\end{array}
$$

Illustration

$$
x^{2}=-4
$$

Solution

$$
x^{2}=-4
$$

Hence, no solution as L. H. S. ≥ 0 and R.H.S. <0.

Illustration

$$
x^{2}<4
$$

Solution

$$
\begin{aligned}
& x^{2}<4 \\
& \Rightarrow \quad(x-2)(x+2)<0
\end{aligned}
$$

Using number line rule as shown in figure, we get, $-2<x<2$.

Illustration

$$
x^{2}>4
$$

Solution

$$
\begin{aligned}
& x^{2}>4 \\
& \Rightarrow \quad(x-2)(x+2)>0
\end{aligned}
$$

Using number line rule as shown in figure we get; -2 or $x>2$.

Illustration

$$
x^{2}<-4
$$

Solution
$x^{2}<-4$
$\Rightarrow \quad x^{2}+4<0$, which is not possible
\therefore no solution.

Illustration

$$
x^{2}>-4
$$

Solution

$$
\begin{aligned}
& x^{2}>-4 \\
\Rightarrow & x \\
\Rightarrow & x^{2}+4>0, \text { which is true for all } \\
& x \in \text { real number } \\
\therefore & x \in R .
\end{aligned}
$$

The sum of several non-negative terms

Illustration

Solve:-
$(x+1)^{2}+\left(x^{2}+3 x+2\right)^{2}=0$

Solution

Here,
$(x+1)^{2}+\left(x^{2}+3 x+2\right)^{2}=0$
If and only if each term is zero simultaneously,
$(x+1)=0$ and $\left(x^{2}+3 x+2\right)=0$
$x=-1$ and $x=-1,-2$
\therefore The common solution is $x=-1$
Hence, solution of above equation is $\mathrm{x}=-1$.

Illustration

Solve:-

$$
|x+1|+\sqrt{x-1}=0
$$

Solution

Here

$$
|x+1|+\sqrt{x-1}=0
$$

Where each term is non-negative
$\therefore \quad|x+1|=0$ and $\sqrt{x-1}=0$
Should be zero simultaneously
i.e., $x=-1$ and $x=1$, which is not possible.

There is no x for which each term is zero simultaneously.
Hence, there is no solution.

Illustration

Solve:-

$$
\left|x^{2}-1\right|+(x-1)^{2}+\sqrt{x^{2}-3 x+2}=0
$$

Solution
Here each of the terms is non-negative thus each must be zero simultaneously,

$$
\begin{aligned}
& \left(x^{2}-1\right)=0,(x-1)^{2}=0 \text { and } x^{2}-3 x+2=0 \\
\Rightarrow \quad & x= \pm 1, x=1 \text { and } x=1,2
\end{aligned}
$$

The common solution is $\mathrm{x}=1$
Therefore, $x=1$ is solution of above equation.

Illustration

Let
$f(x)=x$ and $g(x)=|x|$ be two real valued functions,
$\emptyset(x)$ be a function satisfying the condition;
$[\phi(x)-f(x)]^{2}+[\varnothing(x)-g(x)]^{2}=0$. Then find $\emptyset(x)$

Solution

Here,

$$
\begin{aligned}
& {[\emptyset(x)-f(x)]^{2}+[\emptyset(x)-g(x)]^{2}=0 \text { is only possible if }} \\
& \emptyset(x)-f(x)=0 \text { and } \emptyset(x)-g(x)=0 \\
& \Rightarrow \quad \emptyset(x)=f(x)=g(x) \\
& \quad \emptyset(x)=x=|x|
\end{aligned}
$$

Which is only possible if x is non-negative
Therefore,

$$
\emptyset(x)=x, \forall x \in[0, \infty)
$$

Question Practice Online

