Chapter

Hyperbola

Day - 1

1. Hyperbola

Definition

The locus of a point which moves in a plane such that its distance from a fixed point (i.e., focus) is e times its distance from a fixed line (i.e., directrix) is known as Hyperbola.
For Hyperbola (e > 1)

1.1 Standard Equation of Hyperbola

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& b^{2}=a^{2}\left(e^{2}-1\right)
\end{aligned}
$$

1.2 General Equation

The equation of Hyperbola whose focus is (h, k) and directrix is $l x+m y+n=0$ and whose eccentricity e is

$$
(x-h)^{2}+(y-k)^{2}=e^{2} \frac{(l x+m y+n)^{2}}{l^{2}+m^{2}}
$$

1.3 The Foci and Directrix of a Hyperbola

Foci ($\pm \mathrm{ae}, 0) \quad$ Directrix $= \pm \frac{a}{e}$,
Note : Distance between foci $\mathrm{SS}^{\prime e}=2 \mathrm{ae}$
Distance between directrixes $=\frac{2 a}{e}$,

1.4 Some Terms Related to Hyperbola

The equation of the Hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

1. Centre $\mathrm{C}(0,0) \Rightarrow$ All chord passing through C are bisected at C .
2. Eccentricity $b^{2}=a^{2}\left(e^{2}-1\right)$ for Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
3. Foci: $=(\pm \mathrm{ae}, 0)$
4. Axes: The point $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{A}^{\prime}(-\mathrm{a}, 0)$ are called vertices of the Hyperbola and line AA^{\prime} is called transverse axis and the line perpendicular to transverse axis and passing through $\mathrm{C}(0,0)$ is called the conjugate axis.
5. Double ordinate: Any line perpendicular to the transverse axis is called Double ordinate.

If the abscissa of Q is h then ordinates of Q are

$$
\begin{aligned}
& \frac{y^{2}}{b^{2}}=\frac{h^{2}}{a^{2}}-1 \Rightarrow y= \pm \frac{b}{a} \sqrt{h^{2}-a^{2}} \\
& y=\frac{b}{a} \sqrt{h^{2}-a^{2}} \quad \text { (Ist quadrent) } y=-\frac{b}{a} \sqrt{h^{2}-a^{2}} \quad \text { (IV quadrent) }
\end{aligned}
$$

Hence the coordinate of double ordinate are $\left(h, \frac{b}{a} \sqrt{h^{2}-a^{2}}\right)$ and $\left(h,-\frac{b}{a} \sqrt{h^{2}-a^{2}}\right)$.
6. Latus Rectum: The double ordinates LL' and $L_{1} L_{1}$ ' are the latus rectum of the Hyperbola. These lines are perpendicular to transverse axis AA' and through the foci S and S^{\prime} respectively.

1.5 Length of Latus Rectum

Let $L L^{\prime}=2 k \quad L S=L^{\prime} S=k$
Coordinate of L, L' an $(a e, k)(a e,-k)$

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 . \\
& k^{2}=b^{2}\left(e^{2}-1\right)=b^{2}\left(\frac{b^{2}}{a^{2}}\right) \\
& k=\frac{b^{2}}{a}
\end{aligned}
$$

So length $L L^{\prime}=2 k=\frac{2 b^{2}}{a}$,
\Rightarrow End points of Latus Rectum $\left(a e, \frac{b^{2}}{a}\right)\left(a e,-\frac{b^{2}}{a}\right)\left(-a e, \frac{b^{2}}{a}\right)\left(-a e,-\frac{b^{2}}{a}\right)$.
7. Focal Chord: A chord of the Hyperbola passing through its focus is called a focal chord.
8. Parametric Equation of the Hyperbola

Equation of Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Equation of auxiliary circle $x^{2}+y^{2}=a^{2}$

Proof

Let $\mathrm{P}(x, y)$ be any point are the Hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ draw PN perpendicular to x axis.
Let NQ be a tangent to the auxiliary circle $x^{2}+y^{2}=a^{2}$ join CQ.
Here P and Q are the corresponding points of the Hyperbola and the auxiliary circle φ is the eccentric angle of $\mathrm{P}(\mathrm{u} \leq \theta \leq 2 \pi)$.

$$
\begin{aligned}
& Q(a \cos \theta, a \sin \theta) \\
& x=C N=\frac{C N}{C Q} \times C Q=\sec \varphi, a \\
& x=a \sec \varphi
\end{aligned}
$$

Put this on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ so

$$
\begin{gathered}
\frac{a^{2} \sec ^{2} \varphi}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \Rightarrow y^{2}=b^{2} \tan ^{2} \varphi \\
y= \pm b \tan \varphi
\end{gathered}
$$

P lie in first quadrant so $(a \sec \phi, b \tan \phi)$.

Note:- Equation of chord joining point $P\left(a \sec \varphi_{1}, b \tan \varphi_{1}\right) Q\left(a \sec \varphi_{2}, b \tan \varphi_{2}\right)$

$$
\frac{x}{a} \cos \left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)-\frac{y}{b} \sin \left(\frac{\varphi_{1}+\varphi_{2}}{2}\right)=\cos \left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)
$$

If it is a focal chord when it passes through $(a e, 0)$ or $(-a e, 0)$

$$
\begin{aligned}
& e \cos \left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)=\cos \left(\frac{\varphi_{1}+\varphi_{2}}{2}\right) \\
& \frac{\cos \left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)}{\cos \left(\frac{\varphi_{1}+\varphi_{2}}{2}\right)}=\frac{1}{e} \\
& \frac{\cos \left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)-\cos \left(\frac{\varphi_{1}+\varphi_{2}}{2}\right)}{\cos \left(\frac{\varphi_{1}-\varphi_{2}}{2}\right)+\cos \left(\frac{\varphi_{1}+\varphi_{2}}{2}\right)}=\frac{1-e}{1+e} \\
& \tan \frac{\varphi_{1}}{2}, \tan \frac{\varphi_{2}}{2}=\frac{1-e}{1+e}
\end{aligned}
$$

If it passes through $(-a e, 0)$ then

$$
\tan \frac{\varphi_{1}}{2}, \tan \frac{\varphi_{2}}{2}=\frac{1+e}{1-e}
$$

