

Day - 1

1. Angle of inclination of line

The angle of inclination of a line is the measure of the angle between the x - axis and the line measured in the anticlockwise direction.

Note:-
(i) When two lines are parallel, they have the same inclination.
(ii) The inclination of a line which is parallel to x-axis or coinciding with x-axis is 0°.
(iii) The angle of inclination of the line lies between 0° and 180° i.e., $0<\theta \leq \pi$ and $\theta \neq \frac{\pi}{2}$.

1.1 Slope of gradient of a line

If inclination of a line is $\left(\theta \neq 90^{\circ}\right)$ then $\tan \theta$ is called the slope or gradient of the line. It is usually denoted by m. θ is positive or negative according as it is measured in anticlockwise or clockwise direction.

Note:-

(1) Slope of a line is not the angle but is the tangent of the inclination of the line.
(2) If a line is parallel to x-axis then its slope $=\tan 0^{\circ}=0$.
(3) Slope of a line parallel to y-axis or perpendicular to x - axis is not defined. Whenever we say that slope of a line is not defined.
(4) If a line is equally inclined to the axes, then it will make an angle of 45° or 135° with the positive direction of x - axis. Slope in this case will be $\tan 45^{\circ}$ or $\tan 135^{\circ}$. i.e., ± 1.

Theorem

If $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ are two points on a line 1 , then the slope m of the line 1 is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{1} \neq x_{2}
$$

If $x_{1}=x_{2}$, then m is not defined. In that case the line is perpendicular to x - axis.

Illustration

Find the inclination of the whose slope is $-\frac{1}{\sqrt{3}}$.

Solution

Let α be the Inclination of a line then its slope $=\tan \alpha$

$$
\begin{array}{ll}
\therefore & \tan \alpha=\frac{1}{\sqrt{3}}=-\tan 30^{\circ}=\tan \left(180^{\circ}-30^{\circ}\right)=\tan 150^{\circ} \\
\Rightarrow & \alpha=150^{\circ} .
\end{array}
$$

Illustration

Find the slope of the line through the points $(4,-6),(-2,-4)$.

Solution

Slope of the line $\mathrm{m}=\frac{-5-(-6)}{-2-(4)}=-\frac{1}{6}$.

Illustration

Determine λ, so that 2 is the slope of the line through $(2,5)$ and $(\lambda, 3)$.

Solution

Slope of the line joining $(2,5)$ and $(\lambda, 3)$

$$
\begin{aligned}
& & & =\frac{3-5}{\lambda-2}=-\frac{2}{\lambda-2}=2 \text { (given) } \\
\Rightarrow & & -2 & =2 \lambda-4 \\
\Rightarrow & & 2 \lambda & =2 \\
\therefore & & \lambda & =1
\end{aligned}
$$

1.2 Angle between two lines

Theorem

The acute angle θ between the lines having slopes m 1 and m 2 is given by.

$$
\begin{aligned}
& \theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
\end{aligned}
$$

Corollary

(1) If two lines, whose slopes are m 1 and m 2 are parallel, iff $\theta=0^{\circ}$ (or $\left.\pi\right)^{\mathrm{V}} \Leftrightarrow \tan \theta \Leftrightarrow m_{1}=$ m_{2}.
Thus when two lines are parallel, their slopes are equal.
(2) If two lines, whose slopes are m 1 and m 2 are perpendicular, iff
$\theta=\frac{\pi}{2}\left(\right.$ or $\left.-\frac{\pi}{2}\right) \Leftrightarrow \cot \theta=0 \Leftrightarrow m_{1} m_{2}=-1$.
Thus, when two lines are perpendicular, the product of their slopes is -1 .The slope of each is the negative reciprocal of the slope of other i.e., if m is the slope of a line, then slope of a line perpendicular to it is $-\frac{1}{m}$.

Illustration

The angle between two lines is $\frac{\pi}{4}$ and the slope of one them is $\frac{1}{2}$. Find the slope of the other line.

Solution

If θ be the acute angle between the lines with slopes m_{1} and m_{2} then

Let

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$$
\theta=\frac{\pi}{4} \text { and } m_{1}=\frac{1}{2}
$$

Then

$$
\tan \frac{\pi}{4}=\left|\frac{\frac{1}{2}-m_{2}}{1+\frac{1}{2} m_{2}}\right|
$$

$\Rightarrow \quad 1=\left|\frac{1-2 m_{2}}{2+m_{2}}\right|$
$\Rightarrow \quad \frac{1-2 m_{2}}{2+m_{2}}= \pm 1$
Taking positive sign then,

$$
1-2 m_{2}=2+m_{2}
$$

$$
\therefore \quad m_{2}=-\frac{1}{3}
$$

And taking negative sign then,

$$
\begin{array}{ll}
& 1-2 m_{2}=2-m_{2} \\
\therefore & m_{2}=3
\end{array}
$$

Hence the slope of the other line is either $-\frac{1}{3}$ or 3 .

1.3 Line parallel to co-ordination axes

(i) Equation of a line parallel to y - axis :-

Let l be a straight line parallel to y-axis and at a distance a from it, a being the directed distance of the line from the y-axis. Therefore, the line lies on the right of y-axis if a>0 and if a<0 then the line would lies on the left of y-axis.

$$
\text { Here, } \quad|a|=a
$$

Let $\mathrm{P}(x, y)$ be any point on the line l, then
$x=a$ is the required equation.

Remark

In particular equation of y-axis is $x=0(\because \mathrm{a}=0)$

Note:- A line to y-axis, at a distance from it and on the negative side of y-axis, then its equation is $x=-\mathrm{a}$.

(ii) Equation of a line parallel to \mathbf{x} - axis:-

Let l be a straight line parallel to x - axis and at a distance b from it, b being the direct distance of the line from the x-axis. Therefore, the line lies above the x-axis, if $\mathrm{b}>0$ and if $\mathrm{b}<0$, then the line would lie below the x-axis.
Let $\mathrm{P}(x, y)$ be any point on the line l, then $y=\mathrm{b}$ is the required equation.

Remark

In particular equation of x-axis is y-axis $(\because \mathrm{a}=0)$
Note:- A line parallel to x-axis at a distance b from it and is on the negative side of x-axis, then its equation is $y=-\mathrm{b}$.

Illustration

Find the equation of the straight line parallel to y-axis and at a distance (i) 3 units to the right (ii) 2 units to the left.

Solution

(i) Equation of straight line parallel to y-axis at a distance a units to the right is $x=\mathrm{a}$.
$\therefore \quad$ Required equation is $x=3$
(ii) Equation of straight line parallel to y-axis at a distance a units to the left is $x=-\mathrm{a}$.
$\therefore \quad$ Required equation is $\mathrm{x}=-2$.

Illustration

Find the equation of the straight line parallel to x-axis and at a distance (i) 5 units above the x-axis
(ii) 9 units below the x-axis.

Solution

(i) Equation of straight line parallel to x - axis at a distance b units to the right is $x=\mathrm{a}$.
$\therefore \quad$ Required equation is $x=3$
(ii) Equation of straight line parallel to x-axis at a distance b units below the x-axis is $y=-\mathrm{b}$.
$\therefore \quad$ Required equation is $\mathrm{x}=-2$.

Online Question Practice

