Mean and Variance

Day - 1

Introduction

Corresponding to every outcome of a random experiment, we can associate a real number. This correspondence between the elements of the sample space associated to a random experiment and the set of real numbers id defined as a random variable. If a random variable assumes countable number of values, it is called a discrete random variable. Otherwise, it is known as continuous random variable. We shall study these two types of random variables in the following sections.

Discrete Random Variable

Let S be the sample space associated with a given random experiment. Then, a real valued function X which assigns to each event $w \in \mathrm{~S}$ to a unique real number $\mathrm{X}(w)$ is called a random variable.

Thus, a random variable associated with a given random experiment associates every event to a unique real number as discussed below.

Consider a random experiment of tossing three coins. The sample space of eight possible outcomes of this experiment is given by

$$
\text { S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT }\}
$$

Let X be a real valued function on S , defined by
$\mathrm{X}(w)=$ number of heads in $w \in \mathrm{~S}$.
Then, X is a random variable such that:

$$
\begin{aligned}
& \mathrm{X}(\mathrm{HHH})=3, \mathrm{X}(\mathrm{HHT})=2, \mathrm{X}(\mathrm{HTH})=2, \mathrm{X}(\mathrm{THH})=2 \\
& \mathrm{X}(\mathrm{HTT})=1, X(\mathrm{THT})=1, X(\mathrm{TTH})=1, \text { and } X(\mathrm{TTT})=0
\end{aligned}
$$

Also, if w denotes the event "getting two heads", then

$$
w=\{\mathrm{HTH}, \mathrm{THH}, \mathrm{HHT}\}
$$

And

$$
\mathrm{X}(w)=\mathrm{S}
$$

Similarly, X associates every other compound event to a unique real number.

For the random variable X , we have range $(\mathrm{X})=\{0,1,2,3\}$ and we say that X is a random variable such that it assumes values $0,1,2,3$. This random variable can also be described as the number of heads in a single throw of three coins.

Now, consider the random experiment of throwing an unbiased die. Let Y be a real valued function defined on the sample space $S=\{1,2,3,4,5,6\}$ associated with the random experiment, defined by

$$
Y(w)=\left\{\begin{array}{l}
1, \text { if the outcome is an even number } \\
-1, \text { if the outcome is an odd number }
\end{array}\right.
$$

Clearly, Y is a random variable such that:

$$
\mathrm{Y}(1)=-1, \mathrm{Y}(2)=1, \mathrm{Y}(3)=-1, \mathrm{Y}(4)=1, \mathrm{Y}(5)=-1 \text { and } \mathrm{Y}(6)=1 .
$$

Here, range $(\mathrm{Y})=\{-1,1\}$. Therefore, we say that Y is a random variable such that it assumes values - 1and 1.

Illustration

Consider a random experiment of tossing three coins. Let X be a real valued function defined on the sample space

S $=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{TTH}, \mathrm{THT}, \mathrm{TTT}\}$ such that
$\mathrm{X}(w)=$ Number of tails in $\mathrm{X}(w)=\mathrm{S}$.

Then X, is a random variable such that

$$
\begin{aligned}
& X(H H H)=0, X(H H T)=1, X(H T H)=1, X(T H H)=1, X(H T T)=2, \\
& X(T H T)=2, X(T T H)=2, \text { and } X(T T T)=3
\end{aligned}
$$

Clearly, range of X is $\{0,1,2,3\}$

Illustration

Consider a random experiment of throwing a six faced die. Let X denote the number on the upper face of the die. Then,

$$
X(1)=1, X(2)=2, X(3)=3, X(4)=4, X(5)=5 \text { and } X(6)=6
$$

Clearly, X is a random variable which assumes values $1,2,, 4,5,6$ i.e., range of $\mathrm{X}=\{1,2,3,4,5$, $6\}$.

Illustration

Let there be a bag containing 5 white, 4 red and 3 green balls. Three balls are drawn. If X denotes the number of green balls in the draw. Then, X can assume values $0,1,2,3$. Clearly, X is a random variable with its range $=\{0,1,2,3\}$.

Illustration

A pair of dice is thrown. If X denotes the sum of the numbers on two dice, then X assumes values $2,3,4, \ldots, 12$. Clearly, X is a random variable with its range $\{2,3,4, \ldots, 12\}$.

Probability Distribution

In the previous section, we have defined random variable. Now, consider a random experiment in which three coins are tossed simultaneously (or a coin is tossed three times). Le X be a random variable defined on the sample space.
$\mathrm{S}=\{\mathrm{HHH}, \mathrm{THH}, \mathrm{HHT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{HTT}, \mathrm{HTT}$, TTT $\}$ such that
$\mathrm{H}(w)=$ number of heads in $w \in \mathrm{~S}$.

Clearly, X assumes value $0,1,2,3$.
Now, $\quad P(X=0)=$ Probability of getting no head $=P(T T T)=\frac{1}{8}$

$$
\mathrm{P}(\mathrm{X}=1)=\text { Probability of getting one head }
$$

$$
=\mathrm{P}(\text { HTT or THT or } \mathrm{TTH})=\frac{3}{8}
$$

$\mathrm{P}(\mathrm{X}=2)=$ Probability of getting two head
$=\mathrm{P}($ HHT or THH or HTH$)=\frac{3}{8}$
$\mathrm{P}(\mathrm{X}=3)=$ Probability of getting 3 heads
$=\mathrm{P}(\mathrm{HHH})=\frac{1}{8}$
These values of X and the corresponding probabilities can be exhibited as under:

$\mathrm{X}:$	0	1	2	3
$\mathrm{P}(\mathrm{X}):$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

This tabular representation of the values of a random variable X and the corresponding probabilities is known of the probability distribution.
The formal definition of the probability distribution of a random variable is as given below.

Probability Distribution

If a random variable X takes values $x_{1}, x_{2}, \ldots \ldots x_{n}$ with respective probabilities $p_{1}, p_{2}, \ldots p_{n}$, then

$$
\begin{array}{rlllll}
\mathrm{X}: & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{xn} \\
\mathrm{P}(\mathrm{X}): & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \ldots & \mathrm{p}_{\mathrm{n}}
\end{array}
$$

Is known as the probability distribution of X .
Thus, a tabular description giving the values of the random variable along with the corresponding probabilities is called its probability distribution.

Remark - 1

The probability distribution of a random variable X is defined only when we have the various values of the random variable e.g. $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ together with respective probabilities $p_{1}, p_{2}, \ldots p_{n}$ satisfying $\sum_{i=1}^{n} p_{i}=1$.

Remark - 2

If X is a random variable with the probability distribution

$$
\begin{array}{rlllll}
\mathrm{X}: & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \ldots & \mathrm{xn} \\
\mathrm{P}(\mathrm{X}): & \mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \ldots . & \mathrm{p}_{\mathrm{n}}
\end{array}
$$

Then,

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{X} \leq \mathrm{x}_{\mathrm{i}}\right) & =\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)+\ldots .+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right) \\
& =\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots .+\mathrm{p}_{\mathrm{i}} \\
\mathrm{P}\left(\mathrm{X} \leq \mathrm{x}_{\mathrm{i}}\right) & =\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)+\ldots .+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}-1}\right) \\
& =\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots .+\mathrm{p}_{\mathrm{i}-1} \\
\mathrm{P}\left(\mathrm{X} \geq \mathrm{x}_{\mathrm{i}}\right) & =\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}+1}\right)+\ldots .+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{n}}\right) \\
& =\mathrm{p}_{\mathrm{i}+1}+\mathrm{p}_{\mathrm{i}+2}+\ldots .+\mathrm{p}_{\mathrm{n}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{X} \leq \mathrm{x}_{\mathrm{i}}\right)=1-\mathrm{P}\left(\mathrm{X}<\mathrm{x}_{\mathrm{i}}\right), \mathrm{P}\left(\mathrm{X}>\mathrm{x}_{\mathrm{i}}\right)=1-\mathrm{P}\left(\mathrm{X} \leq \mathrm{x}_{\mathrm{i}}\right) \\
& \mathrm{P}\left(\mathrm{X} \leq \mathrm{x}_{\mathrm{i}}\right)=1-\mathrm{P}\left(\mathrm{X}>\mathrm{x}_{\mathrm{i}}\right) \text { and } \mathrm{P}\left(\mathrm{X}<\mathrm{x}_{\mathrm{i}}\right)=1-\mathrm{P}\left(\mathrm{X} \geq \mathrm{x}_{\mathrm{i}}\right) \\
& \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \leq \mathrm{X} \leq \mathrm{x}_{\mathrm{j}}\right)=\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}+1}\right)+\ldots+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{j}}\right) \\
& \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}<\mathrm{X}<\mathrm{x}_{\mathrm{j}}\right)=\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}+1}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}+2}\right)+\ldots+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{j}-1}\right)
\end{aligned}
$$

The graphical representation of a probability distribution is as follows:

Illustration

Determine which of the following can be probability distribution of a random X :
(i):- X:
$0 \quad 1$2
P(X):
$0.4 \quad 0.4$0.2

(ii):- X:	0	1	2
P(X):	0.6	0.1	0.2

(iii):- X:
0
1
2
3
4
$\mathrm{P}(\mathrm{X})$:
$0.1 \quad 0.5$
$0.2-0.1$
0.3

Solution

We have,
(i):- $\quad \mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=0.4+0.4+0.2=1$.

Hence, the given distribution of probabilities is a probability distribution of random variable X .

$$
\text { (ii):- } \quad \mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=0.6+0.1+0.2=0.9 \neq 1 .
$$

Hence, the given distribution of probabilities is not a probability distribution.
(iii):- We have,

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} & =0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4) \\
& =0.1+0.5+0.2-0.1+0.3=1
\end{aligned}
$$

But, $\mathrm{P}(\mathrm{X}=3)=0.1<0$.
So, the given distribution of probabilities is not a probability distribution.

Illustration

An unbiased die is rolled. If the random variable X is defined as

$$
X(w)=\left\{\begin{array}{l}
1, \text { if the outcome } w \text { is an even number } \\
0, \text { if the outcome } w \text { is and odd number. }
\end{array}\right.
$$

Find the probability distribution of X .

Solution

In a single throw of die either we get an even number or we get an odd number. Thus, the possible values of the random variable X are 0 and 1 .

Now,

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)=\text { Probability of getting an odd number }=\frac{3}{6}=\frac{1}{2} \\
& \mathrm{P}(\mathrm{X}=1)=\text { Probability of getting an even number }=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

Thus, the probability distribution of the random variable X is given by

$$
\begin{array}{rrr}
\mathrm{X}: & 0 & 1 \\
\mathrm{P}(\mathrm{X}): & \frac{1}{2} & \frac{1}{2}
\end{array}
$$

Mean of a Discrete Random Variable

If X is a discrete random variable which assumes values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ with respective probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{p}_{\mathrm{n}}$, then the mean \bar{X} of X is defined as

$$
\bar{X}=p_{1} x_{1}+p_{2} x_{2}+\ldots .+p_{n} x_{n} \quad \text { or } \quad \bar{X}=\sum_{i=1}^{n} p_{i} x_{i}
$$

Remark - 1

The mean of a random variable X is also known as its mathematical expectation or expected value and is denoted by $\mathrm{E}(\mathrm{X})$.

Remark - 2

In case of a frequency distribution $\mathrm{x}_{\mathrm{i}} / \mathrm{f}_{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{n}$ the mean \bar{X} is given by

$$
\begin{array}{ll}
& \bar{X}=\frac{1}{N}\left(f_{1} x_{1}+f_{2} x_{2}+\ldots+f_{n} x_{n}\right) \\
\Rightarrow & \bar{X}=\frac{f_{1}}{N} x_{1}+\frac{f_{2}}{N} x_{2}+\ldots+\frac{f_{n}}{N} x_{n} \\
\Rightarrow & \bar{X}=p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}, \text { where } p_{i}=\frac{f_{i}}{N}
\end{array}
$$

Thus, if we replace $\frac{f_{i}}{N}$ by p_{i} in the definition of mean, we obtain the mean of a discrete random variable. Consequently, the term 'mean' is appropriate for the sum $\sum_{i=1}^{n} p_{i} x_{i}$.

Note:-

The mean of a random variable means the mean of its probability distribution.

Illustration

In a single throw of a die, if X denotes the number on its upper face. Find the mean of X .

Solution

Clearly, X can take the values $1,2,3,4,5$, 6each with probabilities $1 / 6$.
So, the probability distribution of X is as given below:

$$
\begin{array}{ccccccc}
& \mathrm{X}: & 1 & 2 & 3 & 4 & 5 \\
& \mathrm{P}(\mathrm{X}): & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{array}
$$

Illustration

If a pair of dice is thrown and X denotes the sum of the numbers on them. Find the probability distribution of X . Also, find the expectation of X.

Solution

In a single throw of a pair of dice the sum of number on them can be $2,3,4, \ldots, 12$. So, X can assume values $2,3,4, \ldots, 12$. The probability distribution of X is as given below:

$\mathrm{X}:$	2	3	4	5	6	7	8	9	10	11	12
$\mathrm{P}(\mathrm{X}):$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$
\begin{array}{rlrl}
\therefore & & \mathrm{E}(\mathrm{X})=\frac{1}{36} \times 2+\frac{2}{36} \times 3+\frac{3}{36} \times 4 & +\frac{4}{36} \times 5+\frac{5}{36} \times 6+\frac{6}{36} \times 7 \\
& & +\frac{5}{36} \times 8+\frac{4}{36} \times 9+\frac{3}{36} \times 10+\frac{2}{36} \times 11+\frac{1}{36} \times 12 \\
\Rightarrow & \mathrm{E}(\mathrm{X})=\frac{1}{36}[2+6+12+20+30+42+50+36+30+22+12] \\
\Rightarrow & \mathrm{E}(\mathrm{X})=\frac{252}{36}=7 .
\end{array}
$$

Variance of a Discrete Random Variable

If X is a discrete random variable which assumes values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ with the respective probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$, the variance of X defined as

$$
\begin{array}{ll}
& \operatorname{Var}(X)=p_{1}\left(x_{1}-\bar{X}\right)^{2}+p_{2}\left(x_{2}-\bar{X}\right)^{2}+\ldots+p-n\left(x_{n}-\bar{X}\right)^{2} \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{1}\left(x_{1}-\bar{X}\right)^{2}, \text { where } \bar{X}=\sum_{i=1}^{n} p_{i} x_{i} \text { is the mean of } X . \\
\text { Now, } & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{1}\left(x_{1}-\bar{X}\right)^{2} \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i}\left(x_{i}^{2}-2 x_{i} \bar{X}+\bar{X}^{2}\right) \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}-2 \bar{X}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)+\overline{X^{2}}\left(\sum_{i=1}^{n} p_{i}\right) \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}-2 \bar{X} \cdot \bar{X}+\overline{X^{2}} \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}-2 \bar{X}^{2}+\overline{X^{2}} \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}-\bar{X}^{2} \\
\Rightarrow & \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} x_{1}\right)^{2}
\end{array}
$$

Thus,

$$
\begin{aligned}
& \operatorname{Var}(X)=\sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} x_{1}\right)^{2} \\
& \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}
\end{aligned}
$$

Remark

The variance of a discrete random variable X is also known as its second central moment μ_{2}.

Illustration

Find the mean and variance of the number of heads in the two tosses of a coin.

Solution

Let X denote the number of heads in the two tosses of a coin. Then X can take values 0,1 or 2 such that

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)=\text { Probability of getting no head }=\mathrm{P}(\mathrm{TT})=1 / 4 \\
& \mathrm{P}(\mathrm{X}=1)=\text { Probability of getting one head } \\
\Rightarrow \quad & \mathrm{P}(X=1)=P(H T \text { or } T H)=\frac{2}{4}=\frac{1}{2} \\
& \mathrm{P}(\mathrm{X}=2)=\text { Probability of getting both heads }=\mathrm{P}(\mathrm{HH})=\frac{1}{4}
\end{aligned}
$$

Thus, the probability distribution of X is as given below:

$\mathrm{X}:$	0	1	2
$\mathrm{P}(\mathrm{X}):$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Computation of mean and variance

x_{i}	$\mathrm{p}_{\mathrm{i}}=\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$p_{i} x_{1}^{2}$
0	$1 / 4$	0	0
1	$1 / 2$	$1 / 2$	$1 / 2$
2	$1 / 4$	$1 / 2$	1
		$\sum p_{i} x_{i}=1$	$\sum p_{i} x_{i}^{2}=3 / 2$

We have,

$$
\begin{array}{ll}
& \sum p_{i} x_{i}=1 \text { and } \sum p_{i} x_{i}^{2}=\frac{3}{2} \\
\therefore & \bar{X}=\text { Mean }=\sum p_{i} x_{i}=1 \\
& \operatorname{Var}(\mathrm{X})=\sum p_{i} x_{i}^{2}-\left(\sum p_{i} x_{i}\right)^{2}=\frac{3}{2}-1=\frac{1}{2}
\end{array}
$$

Hence, Mean $=1$ and Variance $=\frac{1}{2}$.

