

Mean and Variance

Day – 1

Introduction

Corresponding to every outcome of a random experiment, we can associate a real number. This correspondence between the elements of the sample space associated to a random experiment and the set of real numbers id defined as a random variable. If a random variable assumes countable number of values, it is called a discrete random variable. Otherwise, it is known as continuous random variable. We shall study these two types of random variables in the following sections.

Discrete Random Variable

Let S be the sample space associated with a given random experiment. Then, a real valued function X which assigns to each event $w \in S$ to a unique real number X (w) is called a random variable.

Thus, a random variable associated with a given random experiment associates every event to a unique real number as discussed below.

Consider a random experiment of tossing three coins. The sample space of eight possible outcomes of this experiment is given by

 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

Let X be a real valued function on S, defined by

X(w) = number of heads in $w \in S$.

Then, X is a random variable such that:

X(HHH) = 3, X(HHT) = 2, X(HTH) = 2, X(THH) = 2 X (HTT) = 1, X(THT) = 1, X(TTH) = 1, and X(TTT) = 0

Also, if w denotes the event "getting two heads", then

 $w = \{\text{HTH, THH, HHT}\}$

And X(w) = S

Similarly, X associates every other compound event to a unique real number.

For the random variable X, we have range $(X) = \{0, 1, 2, 3\}$ and we say that X is a random variable such that it assumes values 0, 1, 2, 3. This random variable can also be described as the number of heads in a single throw of three coins.

Now, consider the random experiment of throwing an unbiased die. Let Y be a real valued function defined on the sample space $S = \{1, 2, 3, 4, 5, 6\}$ associated with the random experiment, defined by

 $Y(w) = \begin{cases} 1, & \text{if the outcome is an even number} \\ -1, & \text{if the outcome is an odd number} \end{cases}$

Clearly, Y is a random variable such that:

Y(1) = -1, Y(2) = 1, Y(3) = -1, Y(4) = 1, Y(5) = -1 and Y(6) = 1.

Here, range $(Y) = \{-1, 1\}$. Therefore, we say that Y is a random variable such that it assumes values -1 and 1.

Illustration

Consider a random experiment of tossing three coins. Let X be a real valued function defined on the sample space

 $S = \{HHH, HHT, HTH, THH, HTT, TTH, THT, TTT\}$ such that X(w) = Number of tails in X(w) = S.

Then X, is a random variable such that

X(HHH) = 0, X(HHT) = 1, X(HTH) = 1, X(THH) = 1, X(HTT) = 2, X(THT) = 2, X(TTH) = 2, and X(TTT) = 3

Clearly, range of X is {0, 1, 2, 3}

Illustration

Consider a random experiment of throwing a six faced die. Let X denote the number on the upper face of the die. Then,

X(1) = 1, X(2) = 2, X(3) = 3, X(4) = 4, X(5) = 5 and X(6) = 6

Clearly, X is a random variable which assumes values 1, 2, , 4, 5, 6 i.e., range of $X = \{1, 2, 3, 4, 5, 6\}$.

Illustration

Let there be a bag containing 5 white, 4 red and 3 green balls. Three balls are drawn. If X denotes the number of green balls in the draw. Then, X can assume values 0, 1, 2, 3. Clearly, X is a random variable with its range = $\{0, 1, 2, 3\}$.

Illustration

A pair of dice is thrown. If X denotes the sum of the numbers on two dice, then X assumes values 2, 3, 4,...,12. Clearly, X is a random variable with its range $\{2, 3, 4, ..., 12\}$.

Probability Distribution

In the previous section, we have defined random variable. Now, consider a random experiment in which three coins are tossed simultaneously (or a coin is tossed three times). Le X be a random variable defined on the sample space.

$S = \{HHH, THH, HHT, THT, TTH, HTT, HTT, TTT\}$ such that

H(w) = number of heads in $w \in S$.

Clearly, X assumes value 0, 1, 2, 3.

Now, $P(X = 0) = Probability of getting no head = P(TTT) = \frac{1}{8}$ P(X = 1) = Probability of getting one head $= P(HTT \text{ or THT or TTH}) = \frac{3}{8}$ P(X = 2) = Probability of getting two head $= P(HHT \text{ or THH or HTH}) = \frac{3}{8}$ P(X = 3) = Probability of getting 3 heads $= P(HHH) = \frac{1}{9}$

These values of X and the corresponding probabilities can be exhibited as under:

X:	0	1	2	3
P(X):	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

This tabular representation of the values of a random variable X and the corresponding probabilities is known of the probability distribution.

The formal definition of the probability distribution of a random variable is as given below.

Probability Distribution

If a random variable X takes values x_1, x_2, \ldots, x_n with respective probabilities $p_1, p_2, \ldots p_n$, then

X:	\mathbf{x}_1	x ₂	X ₃	 xn
P(X):	p_1	p_2	p_3	 p_n

Is known as the probability distribution of X.

Thus, a tabular description giving the values of the random variable along with the corresponding probabilities is called its probability distribution.

<u>Remark – 1</u>

The probability distribution of a random variable X is defined only when we have the various values of the random variable e.g. $x_1, x_2, ..., x_n$ together with respective probabilities $p_1, p_2, ..., p_n$ satisfying $\sum_{i=1}^n p_i = 1$.

<u>Remark – 2</u>

If X is a random variable with the probability distribution

X:

$$x_1$$
 x_2
 x_3

 xn

 P(X):
 p_1
 p_2
 p_3

 p_n

Then,

$$\begin{split} P(X \leq x_i) &= P(X = x_1) + P(X = x_2) + \dots + P(X = x_i) \\ &= p_1 + p_2 + \dots + p_i \\ P(X \leq x_i) &= P(X = x_1) + P(X = x_2) + \dots + P(X = x_{i-1}) \\ &= p_1 + p_2 + \dots + p_{i-1} \\ P(X \geq x_i) &= P(X = x_i) + P(X = x_{i+1}) + \dots + P(X = x_n) \\ &= p_{i+1} + p_{i+2} + \dots + p_n \end{split}$$

Also,

$$\begin{split} P(X \le x_i) &= 1 - P(X < x_i), P(X > x_i) = 1 - P(X \le x_i) \\ P(X \le x_i) &= 1 - P(X > x_i) \text{ and } P(X < x_i) = 1 - P(X \ge x_i) \\ P(x_i \le X \le x_j) &= P(X = x_i) + P(X = x_{i+1}) + \dots + P(X = x_j) \\ P(x_i < X < x_j) &= P(X = x_{i+1}) + P(X = x_{i+2}) + \dots + P(X = x_{j-1}) \end{split}$$

The graphical representation of a probability distribution is as follows:

Illustration

Determine which of the following can be probability distribution of a random X:

0	1	2		
0.4	0.4	0.2		
0	1	2		
0.6	0.1	0.2		
0	1	2	3	4
	0 0.4 0 0.6 0	$\begin{array}{cccc} 0 & 1 \\ 0.4 & 0.4 \\ \\ 0 & 1 \\ 0.6 & 0.1 \\ \\ 0 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

P(X): 0.1 0.5 0.2 - 0.1 0.3

Solution

We have,

(i):- P(X = 0) + P(X = 1) + P(X = 2) = 0.4 + 0.4 + 0.2 = 1.

Hence, the given distribution of probabilities is a probability distribution of random variable X.

(ii):- $P(X = 0) + P(X = 1) + P(X = 2) = 0.6 + 0.1 + 0.2 = 0.9 \neq 1.$

Hence, the given distribution of probabilities is not a probability distribution.

(iii):- We have, P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.1 + 0.5 + 0.2 - 0.1 + 0.3 = 1

But, P(X = 3) = 0.1 < 0.

So, the given distribution of probabilities is not a probability distribution.

Illustration

An unbiased die is rolled. If the random variable X is defined as

 $X(w) = \begin{cases} 1, & \text{if the outcome } w \text{ is an even number} \\ 0, & \text{if the outcome } w \text{ is and odd number.} \end{cases}$

Find the probability distribution of X.

Solution

In a single throw of die either we get an even number or we get an odd number. Thus, the possible values of the random variable X are 0 and 1.

Now,

 $P(X = 0) = Probability of getting an odd number = \frac{3}{6} = \frac{1}{2}$ $P(X = 1) = Probability of getting an even number = \frac{3}{6} = \frac{1}{2}$

Thus, the probability distribution of the random variable X is given by

X:	0	1
P(X):	1	1
	2	2

Mean of a Discrete Random Variable

If X is a discrete random variable which assumes values $x_1, x_2, x_3, ..., x_n$ with respective probabilities $p_1, p_2, p_3, ..., p_n$, then the mean \overline{X} of X is defined as

 $\bar{X} = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$ or $\bar{X} = \sum_{i=1}^n p_i x_i$

<u>Remark – 1</u>

The mean of a random variable X is also known as its mathematical expectation or expected value and is denoted by E(X).

Remark - 2

In case of a frequency distribution x_i/f_i ; i= 1, 2,...,n the mean \overline{X} is given by

$$\overline{X} = \frac{1}{N} (f_1 x_1 + f_2 x_2 + \dots + f_n x_n)$$

$$\Rightarrow \qquad \overline{X} = \frac{f_1}{N} x_1 + \frac{f_2}{N} x_2 + \dots + \frac{f_n}{N} x_n$$

$$\Rightarrow \qquad \overline{X} = p_1 x_1 + p_2 x_2 + \dots + p_n x_n, \text{ where } p_i = \frac{f_i}{N}$$

Thus, if we replace $\frac{f_i}{N}$ by p_i in the definition of mean, we obtain the mean of a discrete random variable. Consequently, the term 'mean' is appropriate for the sum $\sum_{i=1}^{n} p_i x_i$.

Note:-

The mean of a random variable means the mean of its probability distribution.

Illustration

In a single throw of a die, if X denotes the number on its upper face. Find the mean of X.

Solution

Clearly, X can take the values 1, 2, 3, 4, 5, 6each with probabilities 1/6. So, the probability distribution of X is as given below:

	X:	1	2	3	4	5	6
	P(X):	$\frac{1}{\epsilon}$	$\frac{1}{\epsilon}$	$\frac{1}{\epsilon}$	$\frac{1}{\epsilon}$	$\frac{1}{\epsilon}$	$\frac{1}{c}$
÷	$\overline{X} = \frac{1}{6} \times 1 + \frac{1}{6}$	$\frac{1}{2} \times 2 + \frac{1}{2}$	$\frac{1}{6} \times 3 + \frac{1}{6}$	$\times 4 + \frac{1}{6}$	$\times 5 + \frac{1}{6} \times$	6 6	6
⇒	$\overline{\mathbf{X}} = \frac{1}{6} \times (1 + 1)$, 2 + 3 +	• 4 + 5 +	$6) = \frac{1}{6} \times$	$\frac{6(6+1)}{2} =$	$\frac{7}{2}$	

Illustration

If a pair of dice is thrown and X denotes the sum of the numbers on them. Find the probability distribution of X. Also, find the expectation of X.

Solution

In a single throw of a pair of dice the sum of number on them can be 2, 3, 4,...,12. So, X can assume values 2, 3, 4,...,12. The probability distribution of X is as given below:

X:	2	3	4	5	6	7	8	9	10	11	12
P(X):	$\frac{1}{36}$	2 36	<u>3</u> 36	<u>4</u> 36	<u>5</u> 36	<u>6</u> 36	5 36	<u>4</u> 36	<u>3</u> 36	2 36	$\frac{1}{36}$

$$\begin{split} \therefore \qquad & E(X) = \frac{1}{36} \times 2 + \frac{2}{36} \times 3 + \frac{3}{36} \times 4 + \frac{4}{36} \times 5 + \frac{5}{36} \times 6 + \frac{6}{36} \times 7 \\ & \qquad + \frac{5}{36} \times 8 + \frac{4}{36} \times 9 + \frac{3}{36} \times 10 + \frac{2}{36} \times 11 + \frac{1}{36} \times 12 \\ \Rightarrow \qquad & E(X) = \frac{1}{36} [2 + 6 + 12 + 20 + 30 + 42 + 50 + 36 + 30 + 22 + 12] \\ \Rightarrow \qquad & E(X) = \frac{252}{36} = 7. \end{split}$$

Variance of a Discrete Random Variable

If X is a discrete random variable which assumes values $x_1, x_2, x_3, ..., x_n$ with the respective probabilities $p_1, p_2, ..., p_n$, the variance of X defined as

$$Var(X) = p_1(x_1 - \overline{X})^2 + p_2(x_2 - \overline{X})^2 + \dots + p - n (x_n - \overline{X})^2$$

$$\Rightarrow \quad Var(X) = \sum_{i=1}^n p_1(x_1 - \overline{X})^2, \text{ where } \overline{X} = \sum_{i=1}^n p_i x_i \text{ is the mean of } X.$$
Now,
$$Var(X) = \sum_{i=1}^n p_1(x_1 - \overline{X})^2$$

$$\Rightarrow \quad Var(X) = \sum_{i=1}^n p_i(x_i^2 - 2x_i\overline{X} + \overline{X}^2)$$

$$\Rightarrow \quad Var(X) = \sum_{i=1}^n p_i x_i^2 - 2\overline{X} (\sum_{i=1}^n p_i x_i) + \overline{X}^2 (\sum_{i=1}^n p_i)$$

$$\Rightarrow \quad Var(X) = \sum_{i=1}^n p_i x_i^2 - 2\overline{X} \cdot \overline{X} + \overline{X}^2 \qquad [\because \quad \sum_{i=1}^n p_i]$$

$$\Rightarrow \quad Var(X) = \sum_{i=1}^n p_i x_i^2 - 2\overline{X}^2 + \overline{X}^2$$

$$\Rightarrow \quad Var(X) = \sum_{i=1}^n p_i x_i^2 - (\sum_{i=1}^n p_i x_1)^2$$
Thus,
$$Var(X) = \sum_{i=1}^n p_i x_i^2 - (\sum_{i=1}^n p_i x_1)^2$$

$$Var(X) = E(X^2) - [E(X)]^2$$

<u>Remark</u>

The variance of a discrete random variable X is also known as its second central moment μ_2 .

Illustration

Find the mean and variance of the number of heads in the two tosses of a coin.

Solution

⇒

Let X denote the number of heads in the two tosses of a coin. Then X can take values 0, 1 or 2 such that

P(X = 0) = Probability of getting no head = P(TT) = 1/4 P(X = 1) = Probability of getting one head $P(X = 1) = P(HT \text{ or } TH) = \frac{2}{4} = \frac{1}{2}$ $P(X = 2) = Probability of getting both heads = P(HH) = \frac{1}{4}$

Thus, the probability distribution of X is as given below:

Х	1 : 0 = 1	2	
P(X)	$: \frac{1}{4} \frac{1}{2}$	$\frac{1}{4}$	
C	computation of mea	an and variance	
x _i	$p_i = P(X = x_i)$	p _i x _i	$p_i x_1^2$
0	1/4	0	0
1	1/2	1/2	1/2
2	1⁄4	1/2	1
		$\sum p_i x_i = 1$	$\sum p_i x_i^2 = 3/2$

We have,

:.

$$\sum p_i x_i = 1 \text{ and } \sum p_i x_i^2 = \frac{3}{2}$$

$$\overline{X} = \text{Mean} = \sum p_i x_i = 1$$

$$\text{Var}(X) = \sum p_i x_i^2 - (\sum p_i x_i)^2 = \frac{3}{2} - 1 = \frac{1}{2}$$

Hence, Mean = 1 and Variance = $\frac{1}{2}$.