Kaysons Education

Day - 1

Definition

A set of mn numbers arranged in the form of an ordered set of m rows and n columns is called $m \times n$ matrix (to be read as m by n matrix)

Thus $m \times n$ matrix A is written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Or
$$A = [a_{ij}]; i = 1, 2, \dots m \text{ and } j = 1, 2, \dots n$$

Or
$$A = [a_{ij}]_{m \times n}$$

Where aij represents the element at the intersection of ith row and jth column.

In case the order of a matrix is established or known then we shall simply write

 $A = [a_{ij}]$ of type m × n.

Various Types of Matrix

(a) Square matrix:-

A matrix in which the number of rows is equal to the number of columns is called a square Matrix. Thus $m \times n$ matrix A will be a square matrix if m = n ad it will be termed as a square matrix of order n or n – rowed square matrix.

(b) Diagonal Elements:-

In a square matrix all those element a_{ij} for which i = j i.e. all those elements which occur in the same row and same column namely a_{11} , a_{22} , a_{33} are called the diagonal elements and the line along which they lie is called the principle diagonal. Also the sum of the diagonal elements of a square matrix A is called trace of A.

i. e. $a_{11} + a_{22} + a_{33} + \ldots =$ Trace of A

In general a_{11} , a_{22}anm are the diagonal elements of n – rowed square matrix and

 $a_{11} + a_{22} + \dots a_{nn} = \text{Trace of A}.$

(c) Diagonal Matrix:-

A square matrix A is said to be a diagonal matrix if all its non – diagonal elements be zero.

Above are diagonal matrix of the type 3×3 These are in short written as Diag[1,4,8] or Diag [d₁, d₂, d₃]

(d) Scalar Matrix:-

A diagonal matrix whose all the diagonal elements are equal is called a scalar matrix.

Thus $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ or $\begin{bmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{bmatrix}$ Are both scalar matrixes of type3×3. In general for a scalar matrix. $a_{ij} = 0$ for $i \neq j$ and $a_{ij} = d$ for i = j

(e)Unit Matrix:-

A square matrix A all of whose non –diagonal elements are zero(i.e.it is a diagonal matrix) and also all the diagonal elements are unity is called a unit matrix or an identity matrix.

	г1	0	~1		г1	0	0	ך 0	
Thus		1	0	and	0	1	0	0	
	0	T	0		0	0	1	0	
	L 0	0	11		L 0	0	0	1	

are unit matrix of order 3 and 4 respectively.

In general for a unit matrix.

 $a_{ii} = 0$ for $i \neq j$ and $a_{ii} = 1$ for i = j.

They are generally denoted by I_3 , I_4 or I_n where 3,4,n denoted of the square matrix. In case the order be know then we may simply denote it by I.

(f) Zero Matrix or Null Matrix:-

Any $m \times n$ matrix in which all the element are zero is called a zero matrix or null matrix of the type $m \times n$ and is denoted by $O_{m \times n}$.

	[O	0] [0	0	0]	0.0	01
Thus	0	0.0	0	$\begin{bmatrix} 0\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 0\\0 \end{bmatrix}$		
	Lo	0] [0	0	0] 10	0 0	01

All the above are zero or null matrices of the type 3×3 , 3×3 and 2×4 respectively.

(g) Determinant of a square Matrix:-

if we have a square matrix having same number of rows and columns it will have $n \times n = n^2$ arrays of numbers. These n^2 numbers also determine a determinant having n rows and n columns and is denoted by Det A or |A|.

(h) Equality of Matrices:-

Two matrices $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$ are said to be equal and written as A = B if and only if they have the same order or are of the same type i.e., each has as many rows and columns as the order [In this case they are said to be comparable and also each element of one is equal to the

corresponding element of the order i.e., $a_{ij} = b_{ij}$ for each pair of subscripts i and j where i = 1, 2 \dots m and j = 1,2,...n]

Hence we can say that two matrix are equal if and only if one is duplicate of the other.

(i) Sum of Matrices:-

Let A = [aij] and B [bij] be two matrices of the same type $m \times n$. Then their sum (or difference) A+B (or A - B) is defined as another matrix of the same type, say C=[cij] such that any element of C is the sum (or difference) of the corresponding elements of A and B.

$$\therefore C = A \pm B = \begin{bmatrix} a_{ij} \pm b_{ij} \end{bmatrix}$$

e. g. $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 5 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} 7 & 3 & 2 \\ 5 & 1 & 9 \end{bmatrix}$
e both A and B are 2×3 matrices.
$$\therefore A + B = \begin{bmatrix} 1+7 & 2+3 & 4+2 \\ 0+5 & 5+1 & 2+9 \end{bmatrix}$$

Hence

$$\therefore A + B = \begin{bmatrix} 1+7 & 2+3 & 4+2 \\ 0+5 & 5+1 & 3+9 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 5 & 6 \\ 5 & 6 & 12 \end{bmatrix}$$
and A - B = \begin{bmatrix} 1-7 & 2-3 & 4-2 \\ 0-5 & 5-1 & 3-9 \end{bmatrix}
$$= \begin{bmatrix} -6 & -1 & 2 \\ -5 & 4 & -6 \end{bmatrix}$$

(j) Negative of a Matrix:-

If A be a given Matrix then – A is called the negative of matrix A and all its element are the corresponding elements of A multiplied by -1.

Thus if
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 6 & -4 & 2 \end{bmatrix}$$

Then $-A = \begin{bmatrix} -2 & -3 & 1 \\ -6 & 4 & -2 \end{bmatrix}$

(k) Scalar Multiple of a Matrix:-

If A be a given matrix and k is any scalar number real or complex. [We call it scalar k to disintiguish it from matrix k which is 1×1 matrix then by matrix k = Ak is meant the matrix all of whose elements are k times of the corresponding elements of A.

If
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 2 & 4 \end{bmatrix}$$

then $3A = \begin{bmatrix} 3.2 & 3.3 & 3.1 \\ 3.5 & 3.2 & 3.4 \end{bmatrix}$
or $3A = \begin{bmatrix} 6 & 9 & 3 \\ 15 & 6 & 12 \end{bmatrix}$
Similarly $-4A = \begin{bmatrix} -4.2 & -4.3 & -4.1 \\ -4.5 & -4.2 & -4.4 \end{bmatrix}$
$$= \begin{bmatrix} -8 & -12 & -4 \\ -20 & -8 & -16 \end{bmatrix}$$

Properties of Matrix Multiplication

(a) Multiplication of matrices is distributive with respect to addition of matrices.

 $i.e., \quad A(B+C) = AB + AC.$

(b) Matrix multiplication is associative if conformability is assured.

 $i.e., \qquad A(BC) = (AB)c.$

(c) The multiplication of matrices is not always commutative. i.e., AB is not always equal to BA.

(d) Multiplication of a matrix A by a null matrix conformable with A for multiplication is a null matrix i.e., AO = O

(e) If AB = O then it does not necessarily mean that A = O or B = O or both are O as shown below.

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

None of the matrix on the left is a null matrix whereas their product is a null matrix.

(f) Multiplication of matrix A by a unit matrix I: Let A be a m \times n matrix and I be a square unit matrix of order n. so that A and I are conformable for multiplication, then

$$AI_n = A.$$

Similarly for IA to exist I should be square unit matrix of order m and in that case $I_m A = A$

Illustration

If
$$A + B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $A - B = \begin{bmatrix} 1 & 4 & 4 \\ 4 & 2 & 0 \\ -1 & -1 & 2 \end{bmatrix}$
then prove that $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -2 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

Solution

Adding and subtracting we get 2A and 2B. Hence A and B are as given.

Illustration

If
$$2X - Y = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$
 and $2Y + X = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{bmatrix}$ then find X and Y

Solution

Eliminate Y and Find X. Put for X and find Y.

$$X = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}, Y = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \end{bmatrix}$$

Illustration

If
$$A_{\alpha} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$$
, then prove the following
(a) $(A_{\alpha})^{n} = \begin{bmatrix} \cosn\alpha & \sinn\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$
(b) $A_{\alpha}A_{\beta} = A_{\alpha+\beta} = A_{\beta}A_{\alpha}$.

Solution

(a):-
(
$$A_{\alpha}$$
)² = $A_{\alpha}A_{\alpha} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
= $\begin{bmatrix} \cos^2 \alpha - \sin^2 \alpha & 2\sin\alpha \cos \alpha \\ -2\sin\alpha \cos \alpha & -\sin^2 \alpha + \cos^2 \alpha \end{bmatrix}$
= $\begin{bmatrix} \cos^2 \alpha & \sin^2 \alpha \\ -\sin^2 \alpha & \cos^2 \alpha \end{bmatrix}$
Similarly, $(A_{\alpha})^3 = (A_{\alpha})^2(A_{\alpha})$
= $\begin{bmatrix} \cos^2 \alpha & \sin^2 \alpha \\ -\sin^2 \alpha & \cos^2 \alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
= $\begin{bmatrix} \cos(2\alpha + \alpha) & \sin(2\alpha + \alpha) \\ -\sin(2\alpha + \alpha) & \cos(2\alpha + \alpha) \end{bmatrix}$
= $\begin{bmatrix} \cos^3 \alpha & \sin^3 \alpha \\ -\sin^3 \alpha & \cos^3 \alpha \end{bmatrix}$
In the light of above let us assume that

$$(A_{\alpha})^{n} = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$$

$$\therefore \qquad (A_{\alpha})^{n+1} = (A_{\alpha})^{n}A_{\alpha}$$

$$= \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix} \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos(n+1)\alpha & \sin(n+1)\alpha \\ -\sin(n+1)\alpha & \cos(n+1)\alpha \end{bmatrix}$$

 $[-\sin(n+1)\alpha]$ Thus we observe that our assumption for $(A_{\alpha})^n$ is true for n = n+1 and it was shown to be true for n = 2,3,.. and hence it is true universally.

(b):-

$$A_{\alpha}A_{\beta} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = A_{\alpha + \beta}$$
Also $A_{\beta}.A_{\alpha} = A_{\alpha + \beta}$ which can be shown as above.

Illustration

If
$$A = \begin{bmatrix} 0 & -\tan \alpha/2 \\ \tan \alpha/2 & 0 \end{bmatrix}$$
 and I is a 2×2 unit matrix, then prove that
I + A = (I - A) $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

Solution

L. H. S. I + A =
$$\begin{bmatrix} 1 & -\tan \alpha/2 \\ \tan \alpha/2 & 1 \end{bmatrix}$$

as I =
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

R. H. S. =
$$\begin{bmatrix} 1 & -\tan \alpha/2 \\ \tan \alpha/2 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

=
$$\begin{bmatrix} \cos \alpha + \sin \alpha \tan \alpha/2 & -\sin \alpha + \cos \alpha \tan \alpha/2 \\ \left(-\tan \frac{\alpha}{2} \right) \cos \alpha + \sin \alpha \pmod{2} \sin \alpha + \cos \alpha \end{bmatrix}$$

Now changing $\tan \alpha/2$ into $\sin \alpha/2/\cos \alpha/2$ and applying the formula for $\sin(A \pm B)$ and $\cos\mathbb{A} \pm B$

R. H. S
$$= \frac{1}{\cos \alpha/2} \begin{bmatrix} \cos(\alpha - \alpha/2) & -\sin(\alpha - \alpha/2) \\ \sin(\alpha - \alpha/2) & \cos(\alpha - \alpha/2) \end{bmatrix}$$
$$= \frac{1}{\cos \alpha/2} \begin{bmatrix} \cos \alpha/2 & -\sin \alpha/2 \\ \sin \alpha/2 & \cos \alpha/2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -\tan \alpha/2 \\ \tan \alpha/2 & 1 \end{bmatrix} = I + A \text{ by } (1)$$