Matrices

Day - 1

Definition

A set of $m n$ numbers arranged in the form of an ordered set of m rows and n columns is called $m \times$ n matrix (to be read as m by n matrix)
Thus $\mathrm{m} \times \mathrm{n}$ matrix A is written as

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{31} & a_{32} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Or $\quad A=\left[a_{i j}\right] ; i=1,2, \ldots m$ and $j=1,2, \ldots n$
Or $\quad A=\left[a_{i j}\right]_{m \times n}$
Where aij represents the element at the intersection of ith row and jth column.
In case the order of a matrix is established or known then we shall simply write

$$
\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \text { of type } \mathrm{m} \times \mathrm{n} .
$$

Various Types of Matrix

(a) Square matrix:-

A matrix in which the number of rows is equal to the number of columns is called a square Matrix.
Thus $\mathrm{m} \times \mathrm{n}$ matrix A will be a square matrix if $\mathrm{m}=\mathrm{n}$ ad it will be termed as a square matrix of order n or n - rowed square matrix.

(b) Diagonal Elements:-

In a square matrix all those element a_{ij} for which $\mathrm{i}=\mathrm{j}$ i.e. all those elements which occur in the same row and same column namely $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}$ are called the diagonal elements and the line along which they lie is called the principle diagonal. Also the sum of the diagonal elements of a square matrix A is called trace of A .
i. e. $a_{11}+a_{22}+a_{33}+\ldots=$ Trace of A

In general $a_{11}, a_{22} \ldots$ anm are the diagonal elements of $n-$ rowed square matrix and

$$
\mathrm{a}_{11}+\mathrm{a}_{22}+\ldots \mathrm{a}_{\mathrm{nn}}=\text { Trace of } \mathrm{A} .
$$

(c) Diagonal Matrix:-

A square matrix A is said to be a diagonal matrix if all its non - diagonal elements be zero.

$$
\text { Thus }\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 8
\end{array}\right| \quad \text { or }\left|\begin{array}{ccc}
\mathrm{d}_{1} & 0 & 0 \\
0 & \mathrm{~d}_{2} & 0 \\
0 & 0 & \mathrm{~d}_{3}
\end{array}\right|
$$

Above are diagonal matrix of the type 3×3 These are in short written as
$\operatorname{Diag}[1,4,8]$ or $\operatorname{Diag}\left[d_{1}, d_{2}, d_{3}\right]$
(d) Scalar Matrix:-

A diagonal matrix whose all the diagonal elements are equal is called a scalar matrix.
Thus $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$ or $\left[\begin{array}{lll}\mathrm{d} & 0 & 0 \\ 0 & \mathrm{~d} & 0 \\ 0 & 0 & \mathrm{~d}\end{array}\right]$
Are both scalar matrixes of type 3×3.
In general for a scalar matrix.
$a_{i j}=0 \quad$ for $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{a}_{\mathrm{ij}}=\mathrm{d}$ for $\mathrm{i}=\mathrm{j}$

(e)Unit Matrix:-

A square matrix A all of whose non -diagonal elements are zero(i.e.it is a diagonal matrix) and also all the diagonal elements are unity is called a unit matrix or an identity matrix.

$$
\text { Thus }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are unit matrix of order 3 and 4 respectively.
In general for a unit matrix.

$$
\mathrm{a}_{\mathrm{ij}}=0 \quad \text { for } \mathrm{i} \neq \mathrm{j} \text { and } \mathrm{a}_{\mathrm{ij}}=1 \text { for } \mathrm{i}=\mathrm{j} .
$$

They are generally denoted by I_{3}, I_{4} or I_{n} where $3,4, n$ denoted of the square matrix. In case the order be know then we may simply denote it by I.

(f) Zero Matrix or Null Matrix:-

Any $\mathrm{m} \times \mathrm{n}$ matrix in which all the element are zero is called a zero matrix or null matrix of the type $\mathrm{m} \times \mathrm{n}$ and is denoted by $\mathrm{O}_{\mathrm{m} \times \mathrm{n}}$.

$$
\text { Thus }\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

All the above are zero or null matrices of the type $3 \times 3,3 \times 3$ and 2×4 respectively.

(g) Determinant of a square Matrix:-

if we have a square matrix having same number of rows and columns it will have $n \times n=n^{2}$ arrays of numbers. These n^{2} numbers also determine a determinant having n rows and n columns and is denoted by Det A or $|\mathrm{A}|$.

(h) Equality of Matrices:-

Two matrices $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{m \times n}$ are said to be equal and written as $A=B$ if and only if they have the same order or are of the same type i.e., each has as many rows and columns as the order [In this case they are said to be comparable and also each element of one is equal to the
corresponding element of the order i.e., $a_{i j}=b_{i j}$ for each pair of subscripts i and j where $i=1,2$,$\ldots \mathrm{m}$ and $\mathrm{j}=1,2, \ldots \mathrm{n}$]
Hence we can say that two matrix are equal if and only if one is duplicate of the other.

(i) Sum of Matrices:-

Let $\mathrm{A}=[\mathrm{aij}]$ and B [bij] be two matrices of the same type $\mathrm{m} \times \mathrm{n}$. Then their sum (or difference) $\mathrm{A}+\mathrm{B}$ (or A - B) is defined as another matrix of the same type, say $\mathrm{C}=[\mathrm{cij}]$ such that any element of C is the sum (or difference) of the corresponding elements of A and B .

$$
\begin{aligned}
& \therefore C=A \pm B=\left[a_{i j} \pm b_{i j}\right] \\
& \text { e.g. } A=\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 5 & 3
\end{array}\right] \text { and } b=\left[\begin{array}{lll}
7 & 3 & 2 \\
5 & 1 & 9
\end{array}\right]
\end{aligned}
$$

Hence both A and B are 2×3 matrices.

$$
\begin{aligned}
\therefore \quad A+B & =\left[\begin{array}{lll}
1+7 & 2+3 & 4+2 \\
0+5 & 5+1 & 3+9
\end{array}\right] \\
& =\left[\begin{array}{lll}
8 & 5 & 6 \\
5 & 6 & 12
\end{array}\right] \\
\text { and } A-B & =\left[\begin{array}{ccc}
1-7 & 2-3 & 4-2 \\
0-5 & 5-1 & 3-9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-6 & -1 & 2 \\
-5 & 4 & -6
\end{array}\right]
\end{aligned}
$$

(j) Negative of a Matrix:-

If A be a given Matrix then - A is called the negative of matrix A and all its element are the corresponding elements of A multiplied by -1 .

$$
\begin{aligned}
& \text { Thus if } A=\left[\begin{array}{ccc}
2 & 3 & -1 \\
6 & -4 & 2
\end{array}\right] \\
& \text { Then }-A=\left[\begin{array}{ccc}
-2 & -3 & 1 \\
-6 & 4 & -2
\end{array}\right]
\end{aligned}
$$

(k) Scalar Multiple of a Matrix:-

If A be a given matrix and k is any scalar number real or complex. [We call it scalar k to disintiguish it from matrix $[\mathrm{k}]$ which is 1×1 matrix] then by matrix $\mathrm{kA}=\mathrm{Ak}$ is meant the matrix all of whose elements are k times of the corresponding elements of A .

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{lll}
2 & 3 & 1 \\
5 & 2 & 4
\end{array}\right] \\
& \text { then } 3 A=\left[\begin{array}{lll}
3.2 & 3.3 & 3.1 \\
3.5 & 3.2 & 3.4
\end{array}\right] \\
& \text { or } 3 \mathrm{~A}=\left[\begin{array}{ccc}
6 & 9 & 3 \\
15 & 6 & 12
\end{array}\right] \\
& \text { Similarly }-4 \mathrm{~A}=\left[\begin{array}{ccc}
-4.2 & -4.3 & -4.1 \\
-4.5 & -4.2 & -4.4
\end{array}\right] \\
& \qquad=\left[\begin{array}{ccc}
-8 & -12 & -4 \\
-20 & -8 & -16
\end{array}\right]
\end{aligned}
$$

Properties of Matrix Multiplication

(a) Multiplication of matrices is distributive with respect to addition of matrices.

$$
\text { i.e., } A(B+C)=A B+A C \text {. }
$$

(b) Matrix multiplication is associative if conformability is assured.

$$
\text { i.e., } \quad A(B C)=(A B) \text { c. }
$$

(c) The multiplication of matrices is not always commutative. i.e., AB is not always equal to BA .
(d) Multiplication of a matrix A by a null matrix conformable with A for multiplication is a null matrix i.e., $\mathrm{AO}=\mathrm{O}$
(e) If $\mathrm{AB}=\mathrm{O}$ then it does not necessarily mean that $\mathrm{A}=\mathrm{O}$ or $\mathrm{B}=\mathrm{O}$ or both are O as shown below.

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

None of the matrix on the left is a null matrix whereas their product is a null matrix.
(f) Multiplication of matrix A by a unit matrix I: Let A be a $m \times n$ matrix and I be a square unit matrix of order n . so that A and I are conformable for multiplication, then

$$
A I_{n}=A
$$

Similarly for IA to exist I should be square unit matrix of order m and in that case $I_{m} A=A$

Illustration

$$
\begin{aligned}
\text { If } A+B= & {\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 2 & 2 \\
0 & 0 & 2
\end{array}\right] \text { and } A-B=\left[\begin{array}{ccc}
1 & 4 & 4 \\
4 & 2 & 0 \\
-1 & -1 & 2
\end{array}\right] } \\
& \text { then prove that } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
0 & 0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
0 & -2 & -1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Solution

Adding and subtracting we get 2 A and 2B. Hence A and B are as given.

Illustration

If $2 X-Y=\left[\begin{array}{ccc}3 & -3 & 0 \\ 3 & 3 & 2\end{array}\right]$ and $2 Y+X=\left[\begin{array}{ccc}4 & 1 & 5 \\ -1 & 4 & -4\end{array}\right]$ then find X and Y

Solution

Eliminate Y and Find X . Put for X and find Y .

$$
X=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 0
\end{array}\right], Y=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-1 & 1 & -2
\end{array}\right]
$$

Illustration

If $A_{\alpha}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then prove the following

$$
\begin{aligned}
& \text { (a) }\left(\mathrm{A}_{\alpha}\right)^{\mathrm{n}}=\left[\begin{array}{cc}
\cos \alpha & \sin \mathrm{n} \alpha \\
-\sin \mathrm{n} \alpha & \cos \mathrm{n} \alpha
\end{array}\right] \\
& \text { (b) } A_{\alpha} \mathrm{A}_{\beta}=\mathrm{A}_{\alpha+\beta}=\mathrm{A}_{\beta} \mathrm{A}_{\alpha} .
\end{aligned}
$$

Solution

(a):-

$$
\begin{aligned}
&\left(A_{\alpha}\right)^{2}=A_{a} A_{\alpha}=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
&=\cos ^{2} \alpha-\sin ^{2} \alpha \\
& 2 \sin \alpha \cos \alpha \\
&-2 \sin \alpha \cos \alpha-\sin ^{2} \alpha+\cos ^{2} \alpha \\
&=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
-\sin 2 \alpha & \cos 2 \alpha
\end{array}\right]
\end{aligned}
$$

Similarly, $\left(A_{\alpha}\right)^{3}=\left(A_{\alpha}\right)^{2}\left(A_{\alpha}\right)$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
-\sin 2 \alpha & \cos 2 \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (2 \alpha+\alpha) & \sin (2 \alpha+\alpha) \\
-\sin (2 \alpha+\alpha) & \cos (2 \alpha+\alpha)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 3 \alpha & \sin 3 \alpha \\
-\sin 3 \alpha & \cos 3 \alpha
\end{array}\right]
\end{aligned}
$$

In the light of above let us assume that

$$
\begin{aligned}
\left(\mathrm{A}_{\alpha}\right)^{\mathrm{n}} & =\left[\begin{array}{cc}
\cos \mathrm{n} \alpha & \sin \mathrm{n} \alpha \\
-\sin \mathrm{n} \alpha & \cos \mathrm{n} \alpha
\end{array}\right] \\
\therefore \quad\left(A_{\alpha}\right)^{n+1} & =\left(A_{\alpha}\right)^{n} A_{\alpha} \\
& =\left[\begin{array}{cc}
\cos \mathrm{n} \alpha & \sin \mathrm{n} \alpha \\
-\sin \mathrm{n} \alpha & \cos \mathrm{n} \alpha
\end{array}\right]\left[\begin{array}{cc}
\operatorname{cosn} \alpha & \sin \mathrm{n} \alpha \\
-\sin \mathrm{n} \alpha & \cos \mathrm{n} \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (n+1) \alpha & \sin (n+1) \alpha \\
-\sin (n+1) \alpha & \cos (n+1) \alpha
\end{array}\right]
\end{aligned}
$$

Thus we observe that our assumption for $\left(\mathrm{A}_{\alpha}\right)^{\mathrm{n}}$ is true for $\mathrm{n}=\mathrm{n}+1$ and it was shown to be true for n $=2,3, .$. and hence it is true universally.
(b):-

$$
\begin{aligned}
A_{\alpha} A_{\beta} & =\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\alpha+\beta) & \sin (\alpha+\beta) \\
-\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right]=A_{\alpha+\beta}
\end{aligned}
$$

Also $\quad A_{\beta} \cdot A_{\alpha}=A_{\alpha+\beta}$ which can be shown as above.

Illustration

$$
\begin{gathered}
\text { If } \mathrm{A}=\left[\begin{array}{cc}
0 & -\tan \alpha / 2 \\
\tan \alpha / 2 & 0
\end{array}\right] \text { and } \mathrm{I} \text { is a } 2 \times 2 \text { unit matrix, then prove that } \\
\mathrm{I}+\mathrm{A}=(\mathrm{I}-\mathrm{A})\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
\end{gathered}
$$

Solution

L. H.S. $I+A=\left[\begin{array}{cc}1 & -\tan \alpha / 2 \\ \tan \alpha / 2 & 1\end{array}\right]$
as $\quad I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
R.H.S. $\quad=\left[\begin{array}{cc}1 & -\tan \alpha / 2 \\ \tan \alpha / 2 & 1\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$$
=\left[\begin{array}{cc}
\cos \alpha+\sin \alpha \tan \alpha / 2 & -\sin \alpha+\cos \alpha \tan \alpha / 2 \\
\left(-\tan \frac{\alpha}{2}\right) \cos \alpha+\sin \alpha & (\tan \alpha / 2) \sin \alpha+\cos \alpha
\end{array}\right]
$$

Now changing $\tan \alpha / 2$ into $\sin \alpha / 2 / \cos \alpha / 2$ and applying the formula for $\sin (A \pm B)$ and $\cos (A \pm B)$
R. H. S

$$
\begin{aligned}
& =\frac{1}{\cos \alpha / 2}\left[\begin{array}{cc}
\cos (\alpha-\alpha / 2) & -\sin (\alpha-\alpha / 2) \\
\sin (\alpha-\alpha / 2) & \cos (\alpha-\alpha / 2)
\end{array}\right] \\
& =\frac{1}{\cos \alpha / 2}\left[\begin{array}{cc}
\cos \alpha / 2 & -\sin \alpha / 2 \\
\sin \alpha / 2 & \cos \alpha / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & -\tan \alpha / 2 \\
\tan \alpha / 2 & 1
\end{array}\right]=\mathrm{I}+\mathrm{A} \text { by }(1)
\end{aligned}
$$

