Determinants

Day - 1

Definition

Consider the equations

$$
a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}=0, a_{2} \mathrm{x}+\mathrm{b}_{2 \mathrm{y}}=0
$$

These give $\quad-\frac{a_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}}{\mathrm{x}}=-\frac{a_{2}}{\mathrm{~b}_{2}}$,
Hence $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ or $a_{1} b_{2}-a_{2} b_{1}=0$
We shall express the above eliminant as

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \tag{A}\\
a_{2} & b_{2}
\end{array}\right|=0
$$

We have suppressed the letter x and y to be eliminated and enclosed their coefficient as above in two parallel lines. The left hand member of (A) is called a determinant of second order and its value as we have seen is $a_{1} b_{2}-a_{2} b_{1}$.

Aid to Memory

Similarly a determinant of $3^{\text {rd }}$ order will consist of 3 rows and 3 columns enclosed in two verticals lines and is thus of the form

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \tag{B}\\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

It can be seen that this determinant is the eliminant of x, y, z from the equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=0 \\
& a_{2} x+b_{2} y+c_{2} z=0 \\
& a_{3} x+b_{3} y+c_{3} z=0
\end{aligned}
$$

The value of determinant (B) is

$$
\begin{array}{r}
a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right| c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right| \\
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-b_{1}\left(a_{2} c_{3}-a_{3} c_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right) \tag{1}
\end{array}
$$

Rule
$a_{1}\left(\right.$ determinant obtained by removing the row and column intersecting at $\left.a_{1}\right)$
$-b_{1}$ (determinant obtained by removing the row and column intersecting at b_{1})
$+c_{1}$ (determinant obtained by removing the row and column intersecting at c_{1})
Above is called expansion of the determinant w.r.t. first row.

Expansion With Respect to First Column

$$
\begin{array}{r}
a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{3} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \\
=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)
\end{array}
$$

If you compare (1) and (2) term by term you will observe that are same.

Properties

1. The value of determinant is not altered by changing rows into columns and columns into rows.

$$
\text { e.g. }\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right|=\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|
$$

2. If any two adjacent rows or two adjacent columns of a determinant are interchanged the determinant retains its absolute value but change its sing

$$
\text { e.g. }\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right|=-\left|\begin{array}{ccc}
x & y & z \\
1 & 1 & 1 \\
x^{2} & y^{2} & z^{2}
\end{array}\right|
$$

Here we have interchanged $1^{\text {st }}$ and $2^{\text {nd }}$ rows and hence changed the sign.
3. If any line of a determinant Δ be passed over p parallel lines the resultant determinants is $(-1)^{\mathrm{P}}$ Δ.

$$
\begin{aligned}
& \text { e.g. }\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x & y & z & u \\
x^{2} & y^{2} & z^{2} & u^{2} \\
x^{3} & y^{3} & z^{3} & u^{2}
\end{array}\right| \\
& =(-1)^{3}\left|\begin{array}{cccc}
x^{3} & y^{3} & z^{3} & u^{3} \\
1 & 1 & 1 & 1 \\
x & y & z & u \\
x^{2} & y^{2} & z^{2} & u^{2}
\end{array}\right| \\
& =(-1)^{2}\left|\begin{array}{cccc}
x^{2} & y^{2} & z^{2} & u^{2} \\
1 & 1 & 1 & 1 \\
x & y & z & u \\
x^{3} & y^{3} & z^{3} & u^{3}
\end{array}\right|
\end{aligned}
$$

$$
=(-1)^{1}\left|\begin{array}{cccc}
x & y & z & u \\
1 & 1 & 1 & 1 \\
x^{2} & y^{2} & z^{2} & u^{2} \\
x^{3} & y^{3} & z^{3} & u^{3}
\end{array}\right|
$$

In the first we have crossed fourth row over three parallel rows and hence $(-1)^{3}$ and in the second we have crossed $3^{\text {rd }}$ row over two parallel rows and hence $(-1)^{2}$ and in the last we have crossed $2^{\text {nd }}$ row over one parallel row and hence $(-1)^{1}$. Similarly is the rule for crossing any column over other columns.
4. If any two rows or two columns of a determinant are identical then the determinant vanishes. Thus

$$
\left|\begin{array}{lll}
a_{1} & c_{1} & c_{1} \\
a_{2} & c_{2} & c_{2} \\
a_{3} & c_{3} & c_{3}
\end{array}\right|=0
$$

5. If each constituent in any row or in any column be multiplied by the same factor then the determinant is multiplied by that factor

$$
\left|\begin{array}{lll}
\mathrm{pa}_{1} & \mathrm{~b}_{1} & c_{1} \\
\mathrm{pa}_{2} & \mathrm{~b}_{2} & c_{2} \\
\mathrm{pa}_{3} & \mathrm{~b}_{3} & c_{3}
\end{array}\right|=\mathrm{p}\left|\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{~b}_{1} & c_{1} \\
\mathrm{a}_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

We have taken p common from $1^{\text {st }}$ column.

$$
\left|\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{qa}_{2} & \mathrm{qb}_{2} & \mathrm{qc}_{2} \\
\mathrm{ra}_{3} & \mathrm{rb}_{3} & \mathrm{rc}_{3}
\end{array}\right|=\mathrm{qr}\left|\begin{array}{ccc}
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} \\
\mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}
\end{array}\right|
$$

We have taken q and r from the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows respectively.
6. If each constituent in any row or column consists of r terms then the determinant can be expressed as the sum of r determinants. Thus

$$
\begin{aligned}
\left|\begin{array}{lll}
a_{1}+\alpha_{1} & b_{1} & c_{1} \\
a_{2}+\alpha_{2} & b_{2} & c_{2} \\
a_{3}+\alpha_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| & +\left|\begin{array}{lll}
\alpha_{1} & b_{1} & c_{1} \\
\alpha_{2} & b_{2} & c_{2} \\
\alpha_{3} & b_{3} & c_{3}
\end{array}\right| \text { and }\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1}+\alpha_{1}+\beta_{1} \\
a_{2} & b_{2} & c_{2}+\alpha_{2}+\beta_{2} \\
a_{3} & b_{3} & c_{3}+\alpha_{3}+\beta_{3}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1} & b_{1} & \alpha_{1} \\
a_{2} & b_{2} & \alpha_{2} \\
a_{3} & b_{3} & \alpha_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1} & b_{1} & \beta_{1} \\
a_{2} & b_{2} & \beta_{2} \\
a_{3} & b_{3} & \beta_{3}
\end{array}\right|
\end{aligned}
$$

7. If from each constituent of a row (or column) of a determinant are added or subtracted the equi - multiples of the corresponding constituent of any other row (or column) the determinant remains unaltered.
e.g. consider $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$

Now suppose we add to $1^{\text {st }}$ column, p times the corresponding elements of $2^{\text {nd }}$ column and subtract q times of the corresponding elements of $3^{\text {rd }}$ column then the value of the determinant remains unaltered
Thus

$$
\begin{align*}
& \left|\begin{array}{lll}
a_{1}+p b_{1}-q c_{1} & b_{1} & c_{1} \\
a_{2}+p b_{2}-q c_{2} & b_{2} & c_{2} \\
a_{3}+p b_{3}-c q_{3} & b_{3} & c_{3}
\end{array}\right|=\Delta \\
& \left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+p .0-q .0 \tag{4}
\end{align*}
$$

Illustration

Evaluate the determinant without expansion as far as possible.

$$
\left|\begin{array}{lll}
43 & 1 & 6 \\
35 & 7 & 4 \\
17 & 3 & 2
\end{array}\right|
$$

Solution

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
7.6+1 & 1 & 6 \\
7.4+7 & 7 & 4 \\
7.2+3 & 3 & 2
\end{array}\right| \\
& =7\left|\begin{array}{lll}
6 & 1 & 6 \\
4 & 7 & 4 \\
2 & 3 & 2
\end{array}\right|+\left|\begin{array}{lll}
1 & 1 & 6 \\
7 & 7 & 4 \\
3 & 3 & 2
\end{array}\right| \\
& =7.0+0=0
\end{aligned}
$$

Both the determinants are zero because of identical columns.

Illustration

Evaluate the determinant without expansion as far as possible.

$$
\left|\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega & \omega^{2} & 1 \\
\omega^{2} & 1 & \omega
\end{array}\right|
$$

Where ω is an imaginary cube root of unity.

Solution

We know that if ω is a cube root of unity then $1+\omega+\omega^{2}=0$ and $\omega^{3}=1$ and $\omega 4=\omega^{3} . \omega=\omega$ etc.
Hence applying $C_{1}+C_{2}+C_{3}$ we see that each element of the first column because $1+\omega+\omega^{2}$ i.e. zero
$\therefore \quad \Delta=0$.

Illustration

Evaluate the determinant without expansion as far as possible.

$$
\left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|
$$

Solution
Apply $\mathrm{C}_{3}+\mathrm{C}_{2}$ etc., $\Delta=0$

Illustration

Evaluate $\left|\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|$

Solution

Multiply $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ by a,b,c respectively and hence divided by abc.

$$
\begin{aligned}
\therefore \quad \Delta & =\frac{1}{a b c}\left|\begin{array}{lll}
(a b c) b c & a b c & a(b+c) \\
(a b c) c a & a b c & b(c+a) \\
(a b c) a b & a b c & c(a+b)
\end{array}\right| \\
& =\frac{(a b c)^{2}}{a b c}\left|\begin{array}{lll}
b c & 1 & a b+a c \\
c a & 1 & b c+b a \\
a b & 1 & c a+c b
\end{array}\right|
\end{aligned}
$$

Apply $\mathrm{C}_{3}+\mathrm{C}_{1}$ and take out \sum ab and then C_{2} and C_{3} become identical.

$$
\therefore \quad \Delta=0 .
$$

Illustration

Evaluate : $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$

Solution

Answer $=0$

$$
\log _{n} m=\frac{\log m}{\log n} .
$$

Hence each row becomes
$\log x \log y \log z$ i. e. identical.

