Binomial Theorem

Day - 1

1. Statement of Binomial Theorem for Positive Integral Index

$$
\begin{aligned}
(x+a)^{n}=x^{n} & +{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+\cdots \\
& +{ }^{n} C_{r} x^{n-r} a^{r}+\cdots+\cdots+{ }^{n} C_{n-1} x a^{n-1}+{ }^{n} C_{n} a^{n}
\end{aligned}
$$

If the binomial be $\mathrm{x}-a$ then the terms in the expansion of $(x-a)^{n}$ will be alternaterly + ive and - ive.

2. General Term, $\boldsymbol{T}_{\mathrm{r}+1}$

$$
\begin{array}{lll}
& { }^{n} C_{r} x^{n-r} \cdot a^{r} & \text { for }(x+a)^{n} \\
\text { or } & { }^{n} C_{r} x^{n-r}(-a)^{r} . & \text { for }(x-a)^{n}
\end{array}
$$

The index of x is $n-r$ and that of a is r i.e. sum of the indices of x and a in each term is same i.e., n.

$$
\left|{ }^{n} C_{r}(\mathrm{I})^{n-r}(\mathrm{II})^{r}\right|
$$

3. (a) Binomial Coefficients of Terms Equidistant From the Beginning and the are Equal

Since ${ }^{n} C_{r}={ }^{n} C_{n-r}$,
$\therefore \quad{ }^{n} C_{0}=1={ }^{n} C_{n},{ }^{n} C_{1}={ }^{n} C_{n-1}$,
${ }^{n} C_{2}={ }^{n} C_{n-2}$ etc.
(b) ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
(c) ${ }^{n} C_{r}={ }^{n} C_{p} \Rightarrow$ either $r=p$ or $r+p=n$
(d) $-\frac{{ }^{n} C_{r}}{{ }^{n-1} C_{r-1}}=\frac{n}{r}$
(e) ${ }^{n} C_{r}$ is gratest when $r=\frac{n}{2}$, (n being even)
(f) ${ }^{n} C_{r}$ is greatest when $r=\frac{n-1}{2}$ or $\frac{n+1}{2}$
(n being odd) and ${ }^{n} C_{(n+1) / 2}={ }^{n} C_{(n-1) / 2}$

4. Number of Terms and Middle Term

The number of terms in the expansion of $(\mathrm{x}+a)^{n}$ is $n+1$.
If $n=6$ the number of terms will be $6+1=7$ and the middle will only one i.e. $4^{\text {th }}$
i.e. $\frac{6}{2}+1=4$.

If $n=7$ the number of terms will be $7+1=8$ and in this case there will be 2 middle terms i.e. 4th and 5th

$$
\frac{7+1}{2}=4 \text { and } \frac{7+3}{2}=5 .
$$

Hence if n is even there will be only one middle term i.e., $\left(\frac{n}{2}+1\right)$ th.
If n is odd then there will be two middle terms
i.e., $\left(\frac{n+1}{2}\right)$ th and $\left(\frac{n+3}{2}\right)$ th.

5. Values of Binomial Coefficients

$$
\begin{aligned}
{ }^{n} C_{0} & =1,{ }^{n} C_{1}=\frac{n!}{(n-1)!.1!}=n . \\
{ }^{n} C_{2} & =\frac{n!}{(n-2)!.2!}=\frac{n(n-1)}{2!} \\
{ }^{n} C_{3} & =\frac{n(n-1)(n-2)}{3!}
\end{aligned}
$$

and in general.

$$
\begin{aligned}
{ }^{n} C_{2} & =\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} \\
(1+x)^{n} & =1+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{r} x^{r}+\cdots+{ }^{n} C_{n} x^{n}
\end{aligned}
$$

6. Term Containing x^{r} will occur in T_{r+1} for $(1+x)^{n}$ and it will be ${ }^{n} C_{r} x^{r}$

7. $\frac{T_{r+1}}{T_{r}}$ for $(x+a)^{n}$

$$
\begin{align*}
\frac{T_{r+1}}{T_{r}} & =\frac{{ }^{n} C_{r} x^{n-r} a^{r}}{{ }^{n} C_{r-1} x^{n-r+1} \cdot a^{r-1}} \\
& =\frac{n!}{r!(n-r)!} \frac{(r-1)!(n-r+1)!}{n!} \frac{a}{x} \\
& =\frac{n-r+1}{r} \cdot \frac{a}{x} \tag{1}
\end{align*}
$$

Greatest term in $(1+x)^{n}, n>0$
Evaluate $m=\left(\frac{x}{x+1}\right)(n+1)$
In case m is an integer, then T_{m} and T_{m+l} will be equal and both these will be numerically the greatest terms.
In case m is not an integer, then evaluate [m]i.e. greatest integer, then $T_{[m]+1}$ will be the greatest term.

8. (i) Term Independent of x in the Expansion of $(x+a)^{\text {n }}$

Let T_{r+1} be the term independent of x . Equate to zero the index of z and you will find the value of r.
(ii) Terms Equidistant From the Beginning and End of the Binomial Expansion $(x+a)^{n}$
T_{r+1} from begining of $(x+a)^{n}={ }^{n} C_{r} x^{n-r} a^{r}$
T_{r+1} from end of $(x+a)^{n}$ is T_{r+1} from beginning of $(x+a)^{n}$ (binomial reversed) and is equal to ${ }^{n} C_{r} a^{n-r} x^{r}$.

Illustration

Find the term independent of x in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$

Solution

Let T_{r+1} be independent of $x, i . e$. index of x is zero.

$$
\begin{align*}
(3 x- & \left.-\frac{2}{x^{2}}\right)^{15} \\
T_{r+1} & ={ }^{15} C_{r}(3 x)^{15-r}\left(-\frac{2}{x^{2}}\right)^{r} \\
& =(-1)^{r}{ }^{15} C_{r} 3^{15-r} \cdot 2^{r} \cdot x^{15-r-2 r} \tag{1}
\end{align*}
$$

The index of x is $15-3 \mathrm{r}=0 \therefore \mathrm{r}=5$.
Hench the $6^{\text {th }}$ term is the required term . putting

$$
\begin{aligned}
\mathrm{r} & =5 \text { in }(1), \text { we get } \\
T_{6} & =(-1)^{5}{ }^{15} C_{5} 3^{10} 2^{5} x^{0} \\
& =3^{10} 2^{5} \cdot \frac{15!}{5!(10)!} \\
& =3^{10} 2^{5} \cdot \frac{15 \times 14 \times 13 \times 12 \times 11}{5.4 .3 .2 \cdot 1} \\
& =(3003) 3^{10} 2^{5} .
\end{aligned}
$$

Illustration

Find the coefficient of x^{10} and x^{9} in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{20}$
Solution

$$
\begin{aligned}
& T_{r+1}={ }^{20} C_{r}\left(2 x^{2}\right)^{20-r}\left(-\frac{1}{x}\right)^{r} \\
& \quad=(-1)^{r}{ }^{20} C_{r} 2^{20-r} x^{40-2 r-r} \\
& \therefore \quad 40-3 r=10 \quad \text { or } \quad 9 \\
& \therefore \quad 3 r=30 \quad \text { or } \quad 31 . \\
& \therefore \quad r=10, \text { the other value does not } \\
& \text { of x } 9 \\
& \text { Putting r }=10, \\
& T_{11}= \\
& \quad=\frac{(-1)^{10}{ }^{20} C_{10} 2^{20-10} x^{40-30}}{(10)!(10)!} 2^{10} x^{10}
\end{aligned}
$$

$\therefore \quad r=10$, the other value does not give integral value of r so that there will be no term

Hence the required coefficient is $\frac{(20)!}{(10)!(10)!} \cdot 2^{10}$.

Illustration

Find the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and of x^{-7} in $\left(a x+\frac{1}{b x^{2}}\right)^{11}$.
and find the relation between a and b so that these coefficients are equal.

Solution

Coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is ${ }^{11} C_{5} \frac{a^{6}}{b^{5}}$
Coefficient of x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ is ${ }^{11} C_{6} \frac{a^{5}}{b^{6}}$
In case these Coefficient are equal, then
$\frac{a^{6}}{b^{5}}=\frac{a^{5}}{b^{6}} \quad$ or $\mathrm{a}=\frac{1}{\mathrm{~b}} \quad$ or $\quad \mathrm{ab}=1$
$\therefore{ }^{11} C_{5}={ }^{11} C_{6}$.

Illustration

For what value of r the coefficients of $(r-1)^{t h}$ and $(2 r+3)^{r d}$ terms in the expansion of $(1+\mathrm{x})^{15}$ are equal ?

Solution

$$
\begin{aligned}
& \mathrm{T}_{r-1}={ }^{n} C_{r-2} . x^{r-2} \quad \therefore \quad \text { Coeff.is }{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} . \\
& \mathrm{T}_{2+3}={ }^{n} C_{2 r+2 .} . x^{2 r+2} \quad \therefore \quad \text { Coeff. is }{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} . \\
& \text { Now }{ }^{n} C_{r-2}{ }^{n} C_{2 r+2} . \\
& \text { But if }{ }^{n} C_{p}={ }^{n} C_{q} \text { then } p+q=n \\
& \therefore \quad(r-2)+(2 r+2)=n=15 \\
& \text { or } \quad 3 r=15 \quad \therefore \quad r=5 .
\end{aligned}
$$

Illustration

If the coefficient of 4th and 13th terms in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{n}$ be equal then find the term which is independent of x.

Solution

$$
\begin{gathered}
{ }^{{ }^{\mathrm{n}}} \mathrm{C}_{3}={ }^{\mathrm{n}} \mathrm{c}_{12} \Rightarrow \mathrm{n}=15 \\
\left(x^{2}+\frac{1}{x}\right)^{15}
\end{gathered}
$$

we have to find the term independent of x.it will be 11 th term

$$
T_{11}={ }^{15} C_{10}\left(x^{2}\right)^{5}\left(\frac{1}{x}\right)^{10}={ }^{15} C_{5}=3003
$$

Illustration

In the binomial expansion of $(\mathrm{a}-\mathrm{b})^{\mathrm{n}}, \mathrm{n} \leq 5$, the sum of the 5 th and 6 th terms is zero . Then a / b equals.
(a) $\frac{n-5}{6}$
(b) $\frac{n-4}{5}$
(c) $\frac{5}{n-4}$
(d) $\frac{6}{n-5}$

Solution

Ans.(b)

$$
\begin{aligned}
& T_{5}+T_{6}=0 \\
\Rightarrow & { }^{n} C_{4} a^{n-4}(-b)^{4}+{ }^{n} C_{5} a^{(n-5)}(-b)^{5}=0 \\
\therefore & \frac{{ }^{n} C_{5}}{{ }^{n} C_{5}}=-\frac{a^{n-4}}{a^{n-5}} \cdot \frac{b^{4}}{-b^{5}}=\frac{a}{b} \\
\text { or } \quad & \frac{n-4}{5}=\frac{a}{b} \\
& {\left[\frac{{ }^{n} C_{5}}{{ }^{n} C_{4}}=\text { coeff. of } \frac{\mathrm{T}_{6}}{\mathrm{~T}_{5}}=\frac{n-r+1}{r}=\frac{n-4}{5} \text { for } \mathrm{r}=5\right] }
\end{aligned}
$$

Illustration

If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$ prove that its coefficient is $\frac{(2 n)!}{\left[\frac{1}{3}(4 n-p)\right]!\left[\frac{1}{3}(2 n+p)\right]!}$.

Solution

$$
T_{r+1}={ }^{2 n} C_{r}\left(x^{2}\right)^{2 n-r} \cdot\left(\frac{1}{x}\right)^{r}
$$

Index of x is $4 n-2 r-r=p$
$\therefore \quad r=\frac{4 n-p}{3}$ which should be an integer.
\therefore Coefficient is

$$
{ }^{2 n} C_{\frac{4 n-p}{3}}=\frac{(2 n)!}{[(2 n+p) / 3]!\left[\frac{1}{3}(4 n-p) / 3\right]!} .
$$

Illustration

For $2 \leq r \geq n,\left(\frac{n}{r}\right)+2\left(\frac{n}{r-1}\right)+\left(\frac{n}{r-2}\right)=$
(a) $\left(\frac{n+1}{r-1}\right)$
(b) $2\left(\frac{n+1}{r+1}\right)$
(c) $2\left(\frac{n+2}{r}\right)$
(d) $\left(\frac{n+2}{r}\right)$

Solution

$$
\begin{aligned}
& { }^{n} C_{r}+2{ }^{n} C_{r-1}+{ }^{n} C_{r-2} \\
& \left({ }^{n} C_{r}+{ }^{n} C_{r-1}\right)+\left({ }^{n} C_{r-1}+{ }^{n} C_{r-2}\right) \\
& { }^{n+1} C_{r}+{ }^{n+1} C_{r-1}={ }^{n+2} C_{r} \Rightarrow(d) .
\end{aligned}
$$

