5

Progressions

Day - 1

Arithmetical Progression

(a):- Definition

If certain quantities increase or decrease by the same constant, then quantities from a series which is called an arithmetical progression. This constant is called common difference. For example:-
(i):- $1,4,7,10, \ldots$
(ii):- $9,6,3,0,-3, \ldots$
(iii):- $a, a+d, a+2 d, \ldots$

The common difference in the above three series are 3,-3 and d respectively.

(b):- Notation

The first term of the series is denoted by a, common difference by d , the last term by 1 , the number of terms by n, sum of its n terms by S_{n}, and the nth term by T_{n}.
Standard Results: $\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=1$.

$$
S_{n}=\frac{n}{2}(a+l)=\frac{n}{2}[2 a=(n-1) d] .
$$

(c):- (i) Arithmetic Mean (A. M.)

The arithmetic mean between two given quantities a and b is x so that
$\mathrm{a}, \mathrm{x}, \mathrm{b}$ are in A.P. i.e., $\mathrm{x}-\mathrm{a}=\mathrm{b}-\mathrm{x}$
or $2 \mathrm{x}=\mathrm{a}+\mathrm{b} \quad \therefore \quad \mathrm{x}=\frac{\mathrm{a}+\mathrm{b}}{2}=\mathrm{A} \quad$ (Notation)
Similarly A.M. of n numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ is $A=\frac{\sum a_{i}}{n}$ i.e.,$\frac{S}{n}$

(ii) \boldsymbol{n} arithmetic means between two quantities \boldsymbol{a} and \boldsymbol{b}

If between two given quantities a and b we have to insert n arithmetic means $x_{1}, x_{2}, \ldots x_{n}$, then $\mathrm{a}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}, \mathrm{b}$ will be in A.P. In order to find the values of these means we require the common difference. The above series consists of $(\mathrm{n}+2)$ terms and the last term is b and first term is a.

$$
\begin{array}{rlrl}
\therefore & & b & =T_{n+2}=a+(n+2-1) d \\
\therefore & d & =\frac{b-a}{n+1} . \\
& \therefore & x_{1} & =T_{2}=a+d, \\
& x_{2} & =T_{3}=a+2 d, \ldots, \\
& x_{n} & =T_{n+1}=a+n d .
\end{array}
$$

On putting for d , we get

$$
\begin{equation*}
x_{1}=a+\frac{b-a}{n+1}=\frac{n a+b}{n+1} \tag{1}
\end{equation*}
$$

Interchanging a and b, we get

$$
\begin{equation*}
x_{n}=\frac{n b+a}{n+1} \tag{2}
\end{equation*}
$$

If we interchanging a and b in x_{1} we get x_{n} because x_{1} is first of n means from beginning and x_{n} is first of n means from the end.
Sum of \mathbf{n} arithmetic means $=\mathbf{n}$ [single A. M.]

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\frac{n}{2}\left[x_{1}+x_{n}\right] \text { (Sum of A.P.) } \\
& =\frac{n}{2}[a+d+b-d]=n\left(\frac{a+b}{2}\right) . \\
& =\mathrm{n} \text { (A.M. of a and b) }
\end{aligned}
$$

(d):- An important note

(1):- If each of a given arithmetical progression be increased, decreased, multiplied or divided by the same non-zero quantity, then the resulting series thus obtained will also be in A.P.
Further $a_{1}, a_{3}, a_{5}, a_{7}, \ldots$ or $a_{2}, a_{4}, a_{6}, \ldots$ will also form an A.P. of common difference $2 d$.
Also $a_{m}, a_{m+n}, a_{m+2 n}, a_{m+3 n}, \ldots$ will also form an A.P. of common difference $n d$.
(2):- Any three numbers in A.P. be taken as $a-d, a, a+d$. Any four numbers in A.P. be taken as a $-3 d, a-d, a+d, a+3 d$.
Similarly five terms in A.P. should be taken as $a-2 d, a-d, a, a+d, a+2 d$ and six terms as $a-$ $5 d, a-3 d, a-d, a+d, a+3 d, a+5 d$ etc.

(e):- Two important Properties of A.P

(1):- In an A.P. the sum of terms equidistant from the beginning and end is constant and equal to the sum of first and last terms
(2):- Any term of an A.P. (except the first) is equal to half the sum of terms which are equidistant from it :

$$
\begin{aligned}
& a_{n}=\frac{1}{2}\left(a_{n-k}+a_{n+k}\right), k<n, \text { and for } k=1, \\
& a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n+1}\right)
\end{aligned}
$$

Illustration

The fifth term of an A.P. is 1 whereas its 31 st term is -77 . Find its 20th term and sum of its first fifteen terms. Also find which term of the series will be -17 and sum of how many terms will be 20.

Solution

$\mathrm{T}_{5}=\mathrm{a}+4 \mathrm{~d}=1, \mathrm{~T}_{31}=\mathrm{a}+30 \mathrm{~d}=-77$,
Solving the above two, we get

$$
\begin{align*}
\mathrm{a} & =13 \text { and } \mathrm{d}=-3 . \tag{1}\\
\mathrm{S}_{15} & =(\mathrm{n} / 2)[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]
\end{align*}
$$

$$
=(15 / 2)[26+14(-3)]=-120 .
$$

Let $\mathrm{T}_{\mathrm{n}}=-17$. Then $\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=-17$.

$$
13+(n-1)(-3)=17
$$

$\therefore \quad 3 \mathrm{n}=33$ or $\mathrm{n}=11$.
Let $\mathrm{S}_{\mathrm{n}}=20$. Then $(\mathrm{n} / 2)[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=20$.

$$
n[2 \times 13+(n-1)(-3)]=40, \text { by }(1)
$$

$$
3 n^{2}-29 n+40=0
$$

$\therefore \quad(\mathrm{n}-8)(3 \mathrm{n}-5)=0, \therefore \mathrm{n}=8$.
The value of n cannot be fractional.

Illustration

The nth term of a series is given to be $\frac{3+n}{4}$, find the sum of 105 terms of this series.

Solution

Putting $n=1,2,3, \ldots$ in $\mathrm{Tn}=(3+\mathrm{n}) / 4$
We get the series as

$$
\begin{aligned}
& 1, \frac{5}{4}, \frac{3}{2}, \ldots \therefore a=1, d=\frac{1}{4} . \\
S_{105}= & \frac{105}{2}\left[2.1+(104) \frac{1}{4}\right] \\
= & (105 / 2) \times 28=1470 .
\end{aligned}
$$

Illustration

Find the sum of first 24 terms of the A.P. $a_{1}, a_{2}, a_{3}, \ldots$ If it is known that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+$ $\mathrm{a}_{24}=225$.

Solution

$$
a_{5}+a_{20}=a_{1}+a_{24}, a_{10}+a_{15}=a_{1}+a_{24} .
$$

Hence the given relations reduce to

$$
3\left(a_{1}+a_{24}\right)=225 \text {, giving } a_{1}+a_{24}=75,
$$

Hence $S_{24}=(24 / 2)\left(a_{1}+a_{24}\right)=12 \times 75=900$.

Geometrical Progression

Definition

A series in which each term is same multiple of the preceding term is called a geometrical progression. In other words, a series in which the ratio of successive terms is constant is called a G.P. This constant ratio is called common ratio and is denoted by r. e.g.
(i):- $1,4,16, \ldots$
(ii):- $9,6,4, \ldots$
(iii):- $a, a r, a r^{2}, \ldots$

All the above series are geometrical progressions in which common ratio are $4, \frac{2}{3}$ and r respectively.

\boldsymbol{n} th term of a G.P.

Let the series be $a, a r, a r^{2}, a r^{3}, \ldots$

$$
\mathrm{T}_{1}=\mathrm{a}=\mathrm{ar}^{1-1}, \mathrm{~T}_{2}=\mathrm{ar}=\mathrm{ar}^{2-1}
$$

$$
\begin{array}{ll}
& \mathrm{T}_{3}=\mathrm{ar}^{2}=\mathrm{ar}^{3-1}, \ldots \\
\therefore \quad & \mathrm{~T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1} . \tag{1}
\end{array}
$$

Sum of \boldsymbol{n} terms of a G.P.

Let

$$
\begin{array}{rlrl}
& \mathrm{S} & =\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+\ldots+\mathrm{ar}^{\mathrm{n}-1} \\
\therefore \quad r . S & =\left[a r+a r^{2}+\cdots+a r^{n-1}\right]+a r^{n} .
\end{array}
$$

Subtracting, we get

$$
\begin{align*}
& \mathrm{S}(1-\mathrm{r})=\mathrm{a}-\mathrm{ar}^{\mathrm{n}} \\
\therefore \quad & S=\frac{\boldsymbol{a}\left(1-r^{n}\right)}{1-r} \tag{2}
\end{align*}
$$

Sum of an infinite number of terms of a G.P. when $|\mathrm{r}|<1$.
Since $|\mathrm{r}|<1$ and the number of terms is infinite,
$\therefore \lim _{n \rightarrow \infty} r^{n}=0$ and hence in this case

$$
\begin{equation*}
S_{\infty}=\frac{\boldsymbol{a}}{1-\boldsymbol{r}}, \text { from (2). } \tag{3}
\end{equation*}
$$

Common ratio $=T_{n} / T_{n-1}$
i.e. divide any term by the term which precedes it.
$\therefore \quad x^{2}=a b$ or $x=\sqrt{a b}$
n geometric means between two quantities a and b
Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ be n geometric means between a and b, then $a, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}, b$ will be a G.P. of (n $+2)$ terms, whose last term is b and term is a.

Single Geometric Mean Between a and b

Let x be the single geometric mean between two given quantities a and b , then $\mathrm{a}, \mathrm{x}, \mathrm{b}$ are in G.P
$\therefore \frac{x}{a}=\frac{b}{x}=$ common ration of the G.P.
$\therefore \quad b=T_{n+2}=a r^{n+1}, \therefore r=\left(\frac{b}{a}\right)^{1 /(n+1)}$
$\therefore \quad \mathrm{x}_{1}=\mathrm{T}_{2}=\mathrm{ar}$,
$x_{2}=T_{3}=a r^{2} \ldots x_{n}=T_{n+1}=a r^{n}$
On putting the value of r, we shall find the n geometric means.

Product of \boldsymbol{n} Geometric Means $=\mathbf{G}^{\mathbf{n}}$

$a, x_{1}, x_{2}, \ldots x_{n}, b$ is a G. P. of $n+2$ terms.

$$
\begin{equation*}
\therefore \quad b=T_{n+2}=a r^{n+1} \text { or } r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}} \tag{1}
\end{equation*}
$$

Now product of n means $=\mathrm{x}_{1} \mathrm{x}_{2} \ldots . . \mathrm{x}_{\mathrm{n}}$

$$
\begin{aligned}
& =(a r)\left(a r^{2}\right)\left(a r^{3}\right) \ldots\left(a r^{n}\right) \\
& =a^{n} r^{1+2+3+\cdots n}=a^{n} r^{n(n+1) / 2} \\
& =a^{n}\left(\frac{b}{a}\right)^{n / 2} \text { by }(1)=\mathrm{a}^{n / 2} \mathrm{~b}^{\mathrm{n} / 2}=(\mathrm{ab})^{n / 2}=(\sqrt{a b})^{n}=G^{n}
\end{aligned}
$$

Where G is single G.M. of a and b.

An Important Note

1:- (a) If each term of a geometric progression be multiplied or divided by the same non-zero quantity, then the resulting series is also a G.P.
(b) In a G.P. the product of terms equidistant from the beginning and end is constant and equal to the product of the first and last terms.
2:- Odd number of terms in G.P. must be taken as

$$
\ldots, a r^{3}, a r^{2}, a r, a, \frac{a}{r}, \frac{a}{r^{2}}, \frac{a}{r^{3}}, \ldots
$$

An even number of terms in a G.P. must be taken as

$$
\ldots, a r^{5}, a r^{3}, a r, \frac{a}{r}, \frac{a}{r^{3}}, \frac{a}{r^{5}}, \ldots
$$

In particular three terms as $a r, a, \frac{a}{r}$ and four terms as $a r^{3}, a r, \frac{a}{r}, \frac{a}{r^{3}}$.

3:- If $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ be two G.P.'s of common ratio r_{1} and r_{2} respectively, then $a_{1} b_{1}$, $\mathrm{a}_{2} \mathrm{~b}_{2}, \mathrm{a}_{3} \mathrm{~b}_{3}, \ldots$ and $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \ldots$ will also form G.P. whose common ratio will be $\mathrm{r}_{1} \mathrm{r}_{2}$ and $\frac{r_{1}}{r_{2}}$ respectively.
4:- If $a_{1}, a_{2}, a_{3}, \ldots$ be a G.P. of +ive terms then $\log a_{1}, \log a_{2}, \log a_{3}, \ldots$ will be an A.P. and conversely.

5:- Increasing and decreasing G.P.

Case I:-

Let the first term a be positive. Then if $r>1$, then it is an increasing G.P. but if r is positive and less than 1 i.e. $0<r<1$ then it is a decreasing G.P.
Case II:-
Let the first term a be - ive, then $r>1$, then it is a decreasing G.P. but if $0<r<$ 1 , then it is an increasing G.P.

Illustration

$1+(1+x)+\left(1+x+x^{2}\right)+\left(1+x+x^{2}+x^{3}\right)+\ldots \ldots$ to n terms.

Solution

nth term of the series is

$$
\begin{array}{ll}
& \mathrm{Tn}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots n \text { terms } \\
\therefore \quad & T_{n}=\frac{1 .\left(1-x^{n}\right)}{1-x}
\end{array}
$$

Putting $n=1,2,3, \ldots, n$ and adding, we get

$$
\begin{aligned}
S_{n} & =\frac{1}{1-x}\left[(1+1+1+\cdots)-\left(x+x^{2}+x^{3}+\cdots\right)\right] \\
& =\frac{1}{1-x}\left[n-\frac{x \cdot\left(1-x^{n}\right)}{1-x}\right] \\
& =\frac{1}{(1-x)^{2}}\left[n(1-x)-x\left(1-x^{n}\right)\right]
\end{aligned}
$$

Illustration

If $x=1+a+a^{2}+a^{3}+\ldots$ to $\infty(|a|<1)$ and
$y=1+b+b^{2}+b^{3}+\ldots$ to $\infty(|b|<1)$ prove that

$$
1+a b+a^{2} b^{2}+a^{3} b^{3}+\cdots \text { to } \infty=\frac{x y}{x+y-1}
$$

Solution

$$
\begin{aligned}
& x=\frac{1}{1-a}, y=\frac{1}{1-b} \text { [summing infinite G.P.'s]. } \\
\therefore \quad & a=\frac{x-1}{x}, b=\frac{y-1}{y} \\
\therefore \quad & 1+a b+a^{2} b^{2}+\cdots \infty \\
& =\frac{1}{1-a b}=\frac{1}{1-\frac{(x-1)(y-1)}{x y}}=\frac{x y}{x+y-1} .
\end{aligned}
$$

Illustration

The third term of a G.P. is 4 . The product of first five terms is
(i) 4^{3}
(ii) 4^{5}
(iii) 4^{4}
(iv) None of these.

Solution

Let the G.P. be $a+a r+a r^{2}+a r^{3}+\ldots$
Then as given $T_{3}=a r^{2}=4$.

$$
\begin{align*}
\therefore \quad & \mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{4} \mathrm{~T}_{5}=\mathrm{a} \cdot \mathrm{ar} \cdot \mathrm{ar}^{2} \cdot \mathrm{ar}^{3} \cdot \mathrm{ar}^{4} \cdot=\mathrm{a}^{5} \cdot \mathrm{r}^{10} \tag{1}\\
& =\left(\mathrm{ar}^{2}\right) 5=45, \tag{1}
\end{align*}
$$

Illustration

Given x^{3}, y^{3}, z^{3} are in A.P. and $\log _{x} y, \log _{z} x, \log _{y} z$ are in G.P. If $x y z=64$, then prove that $x=y=$ $\mathrm{z}=4$.

Solution

$$
\begin{align*}
& 2 y^{3}=x^{3}+z^{3} \quad \text { or } \quad\left(\frac{x}{y}\right)^{3}+\left(\frac{z}{y}\right)^{3}=2 \tag{1}\\
& \left(\log _{z} \mathrm{x}\right)^{2}=\log _{\mathrm{x}} \mathrm{y} \cdot \log _{\mathrm{y}} \mathrm{z} \\
& \text { or } \quad\left(\frac{\log x}{\log z}\right)^{2}=\frac{\log y}{\log x} \cdot \frac{\log z}{\log y}=\frac{\log z}{\log x} \\
& \therefore \quad(\log \mathrm{x})^{3}=(\log \mathrm{z})^{3} \quad \text { or } \quad \log \mathrm{x}=\log \mathrm{z} \\
& \therefore \quad \mathrm{x}=\mathrm{z}
\end{align*}
$$

Hence from (1), $2 \mathrm{y}^{3}=2 \mathrm{z}^{3} \quad \therefore \quad \mathrm{y}=\mathrm{z}=\mathrm{x}$
But $\mathrm{xyz}=64 \quad \therefore \quad \mathrm{x}^{3}=64$

$$
\therefore \quad \mathrm{x}=\mathrm{y}=\mathrm{z}=4
$$

Illustration

The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of succeeding terms. Find the series.

Solution

Here $\mathrm{a}+\mathrm{ar}=5$

$$
\begin{array}{ll}
& T_{p}=3\left(T_{p+1}+T_{p+2}+\cdots \infty\right) \\
\therefore \quad & a r^{p-1}=3 \cdot \frac{a r^{p}}{1-r} \therefore 1-r=3 r \\
\text { or } \quad & \mathrm{r}=\frac{1}{4} \text { hence } \mathrm{a}=4 \text {, etc. }
\end{array}
$$

