Chapter

Permutations and Combination

Day - 1

Definitions of Permutation

Each of the different arrangements which can be made by taking some or all of a number of things is called a permutations.

Definitions of Combination

Each of the different groups or selections which can be made by taking some or all of a number of things (irrespective or order) is called a combination.

Fundamental Theorem

If there are m ways of doing a thing and for each of the m ways there are associated n ways of doing a second thing then the total number of ways of doing the two things will be mn .

As and example suppose six subjects are to be taught in four periods. For the first period we can put any of the six subjects i.e., there are 6 ways of filling the first period. For the second period we are left with remaining subjects and hence there are 5 ways of filling the second period. Hence the number of ways in which first two periods can be filled up is $6 \times 5=30$ ways.

Illustration

Suppose there are 3 doors in a room, 2 on one side and 1 on other side. A man want to go out from the room.

Solution

Obviously he has ' 3 ' options for it. He can come out by door ' A ' or door ' B ' or door ' C '.

Illustration

Suppose a man wants to cross-out a room, which has 2 doors on one side and 1 door on other site.

Solution

He has $2 \times 1=2$ ways for it.

Important Results

(a):- Number of permutations of \mathbf{n} dissimilar things taken r at a time.

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}=n(n-1)(n-2) \ldots \ldots \ldots(n-r+1)
$$

The last factor is $[\mathrm{n}-(\mathrm{r}-1)]=\mathrm{n}-\mathrm{r}+1$.
Where $n!=1.2 .3 \ldots \ldots n$.
Note that

$$
\begin{aligned}
n! & =n \cdot(n-1)! \\
& =n(n-1) \cdot(n-2)!\text { etc. }
\end{aligned}
$$

Note:- In the above repetition was not allowed so that if we could fill the first place in n ways then second could be filled in $(n-1)$, third in $(n-2) \ldots$ are r th in $(n-r+1)$ ways. Hence the total by fundamental theorem was

$$
n(n-1)(n-2) \ldots(n-r+1) \text { ways }
$$

Now if repetition is allowed.
In this case each of the r places can be filled in n ways. Hence by fundamental theorem all the r places can be filled in n.n.n.n....r times $=n^{r}$ ways.
(b):- Number of permutations of \mathbf{n} dissimilar things taken all at a time.

$$
\begin{aligned}
{ }^{n} P_{n} & =n(n-1)(n-2) \ldots \ldots \ldots[n-(n-1)] \\
& =n(n-1)(\mathrm{n}-2) \ldots \ldots \cdot 3 \cdot 2 \cdot 1 .=\mathrm{n}!
\end{aligned}
$$

(c):- Number of combinations of \mathbf{n} dissimilar things taken r at a time.

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}=\frac{{ }^{n} P_{r}}{r!} \quad \text { or } \quad r!{ }^{n} C_{r}={ }^{n} P_{r}
$$

(d):- Number of combinations of \mathbf{n} dissimilar things taken all at a time.

$$
{ }^{n} C_{n}=\frac{n!}{n!(n-n)!}=\frac{1}{0!}=1 \quad \because 0!=1
$$

(e):- If out of n things p are exactly alike of one kind, q exactly alike of second kind and r exactly alike of third kind and rest all different, then the number of permutations of n things taken all at a true.

$$
=\frac{p!}{p!. q!. r!}
$$

(f):- Number of circular permutations of \mathbf{n} different things taken all at a time.

Here having fixed one thing the remaining ($n-1$) things can be arranged round the table in ($n-1$)! Ways.

Note:- If however n persons are to be arranged in a row then as show in (b) the number of arrangements was nth whereas for a circular table as shown above the number of arrangements is $(\mathrm{n}-1)$!.

Particular Case: Necklace:- Number or arrangements of n beads all different to form a necklace or on a circular wire will be $1 / 2(n-1)$! As explained in the figure below:
$\mathrm{R}=$ Ram. $\mathrm{G}=$ Ganesh. $\mathrm{B}=$ Brahma
$\mathrm{R}=$ Red. $\mathrm{G}=$ Green. $\mathrm{B}=$ Blue

The above seating arrangements of these person on the round table are different as shown in upper figure and that is why we say $(n-1)$! Clockwise and anticlockwise make different arrangements.

Round Table

Necklace

The above two arrangements of three flowers to form a necklace is the same because on the necklace we get the same arrangements and that is why we say the total number of arrangements of n beads for forming a necklace is $1 / 2(n-1)$!. Here clockwise or anticlockwise does not change the character of the necklace. It remains the same.
(g):- If some or all of n things be taken at a time then the number of combinations will be

$$
2^{n}-1 . \because{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots \ldots \ldots+{ }^{n} C_{r}=2^{n}-1
$$

(h):- ${ }^{n} C_{r}={ }^{n} C_{n-r}$
(i):- ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r} 1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r} 2} \Rightarrow \mathrm{r}_{1}=\mathrm{r}_{2}$ or $\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{n}$.
(j):- ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$.
(k):- Number of combinations of n dissimilar things taken r at a time when p particular things always occure.

$$
={ }^{n-p} C_{r-p}
$$

(l):- Number of combinations of n dissimilar things taken r at a time when p particular things never occur.

$$
={ }^{n-p} C_{r}
$$

(m):- Number of permutations of n dissimilar things taken r at a time when p particular things always occure.

$$
={ }^{n-p} C_{r-p} \cdot r!
$$

(n):- Number of permutations of n dissimilar things taken r at a time when p particular things never occure.

$$
={ }^{n-p} C_{r} r!.
$$

(o):- Division Into Groups

(i):- The number of ways in which $\mathrm{m}+\mathrm{n}$ things can be divided into two groups containing m and n things respectively $=\frac{(m+n)!}{m!n!}$.
(ii):- If $\mathrm{n}=\mathrm{m}$, the groups are equal and in this case the number of different ways of subdivision $=\frac{2 m!}{m!m!2!}$. For in any one way it is possible to interchange the two groups without obtaining new division.
(iii):- But if 2 m things are to be divided equally between two person then the number of divisions $=\frac{2 m!}{m!m!}$
(iv):- Similarly the number of divisions of $m+n+p$ things into groups of m, n and p things respectively $=\frac{(m+n+p)!}{m!m!n!p!}$.
(v):- If 3 m things are divided into three equal groups, then the number of divisions $=\frac{(3 m)!}{m!m!m!3!}$.
(vi):- But if 3 m things are to be divided amongs three persons, then the number of divisions $=\frac{(3 m)!}{m!m!m!}$.
(p):- Number of permutations of n dissimilar things taken r at a time when each things an be repeated once, twice, \ldots. upto r times $=n^{\mathrm{r}}$.
Note:- from above we conclude the following: While distributing certain m things equally amongst four persons, the things which has gone to one person shall not go to the other and hence in this case we shall not divide by 4 !. But if however we from four equal groups then we shall divide by 4 !.
For example:-
If 20 different things are to be equally distributed amongst 4 persons the answer will be $\frac{(20)!}{(5!)^{4}}$ but if 20 things are to form 4 equal groups then the answer will be $\frac{(20)!}{(5!)^{4} 4!}$. This 4 ! Corresponds to the number of these four groups.

Illustration

If ${ }^{n} C_{10}={ }^{n} C_{15}$, find ${ }^{27} C_{n}$.

Solution

$$
\begin{array}{rlrl}
& & { }^{n} C_{10} & ={ }^{n} C_{15} . \\
\text { We know }{ }^{n} C_{r} & ={ }^{n} C_{n-r} \\
\therefore & { }^{n} C_{10} & ={ }^{n} C_{n-10}{ }^{n} C_{15}, \tag{1}\\
& & \mathrm{n}-10 & =15 \text { or } \mathrm{n}=25 \\
& \text { or } & \text { If }{ }^{n} C_{x} & ={ }^{n} C_{y} \text { then } x+y=n .
\end{array}
$$

Hence from (1), we get $10+15=25=\mathrm{n}$
$\therefore \quad{ }^{27} C_{n}={ }^{27} C_{25}={ }^{27} C_{27-25}={ }^{27} C_{2}$

$$
\frac{27 \times 26}{1 \times 2}=27 \times 13=1351
$$

Illustration

$$
\text { If }{ }^{n} C_{6}:{ }^{n-3} C_{3}=33: 4, \text { find } n .
$$

Solution

$$
\begin{aligned}
& \frac{{ }^{n} C_{6}}{{ }^{n-3} C_{3}}=\frac{33}{4} \\
& \text { or } \quad \frac{n!}{6!(n-6)!} \cdot \frac{3!(n-6)!}{(n-3)!}=\frac{33}{4} \\
& \text { or } \quad \frac{n(n-1)(n-2)}{6.5 .4}=\frac{33}{4} \\
& \text { or } \quad n(n-1)(n-2)=30 \times 33=11 \times 3 \times 3 \times 10 \\
& =11 \times 10 \times 9=11(11-1)(11-2)
\end{aligned}
$$

Hence clearly $\mathrm{n}=11$

Illustration

(i) How many words can be formed by taking 4 letters at a time out of the letters of the word MATHEMATICS?

Solution

We can choose 4 letters from the 11 listed in part (a) as under.
(i):- All the four different:-

We have 8 different types of letters and out of theses 4 can be arranged in

$$
{ }^{8} P_{4}=\frac{8!}{4!}=8 \times 7 \times 6 \times 5=1680
$$

or $\quad 4$ can be selected in
${ }^{8} C_{4}$ ways and arranged in

$$
\begin{equation*}
{ }^{8} C_{4} \times 4!=\frac{8!}{4!4!} \cdot 4!=\frac{8!}{4!}=1680 \tag{1}
\end{equation*}
$$

(ii):- Two different and two alike:-

We have 3 pairs of like letters out of which one pair can be chosen in ${ }^{3} C_{1}=3$ ways. Now we have to choose two out of the remaining 7 different types of letters which can be done in

$$
={ }^{7} C_{2}=\frac{7!}{5!2!}=\frac{7 \times 6}{2}=21 \text { ways. }
$$

Hence the total number of groups, of 4 letters in which 2 are different and 2 are alike is 3 $\times 21=63$ groups .
Let one such group be M,H,M,I.
Each such group has 4 letters out of which 2 are alike and they can be arranged amongst themselves in $\frac{4!}{2!}=12$ ways. Hence the total number of words is

$$
\begin{equation*}
63 \times 12=756 \tag{2}
\end{equation*}
$$

(iii):- Two alike of one kind and two alike of other kind:-

Out of 3 pairs of like letters we can choose 2 pairs in

$$
{ }^{3} C_{2} \text { ways }=3 \text { ways. }
$$

One such group is MM AA.
These four letters out of which 2 are alike of one kind and 2 alike of other kind, can be arranged in $\frac{4!}{2!2!}=6$ ways.
Hence the total number of words of this type is

$$
\begin{equation*}
3 \times 6=18 \tag{3}
\end{equation*}
$$

Therefore from (i), (ii) and (iii) the number of 4 letter words is

$$
1680+756+18=2454
$$

by (1), (2) and (3)

Illustration

Number plates of cars must contain 3 of the alphabet denoting the place and area to which its owner belongs. This is to be followed by a three-digit number. How many different number plates can be formed if :
(i) repetition of letters and digits is not allowed.
(ii) repetition of letters and digits is allowed.

Solution

There are 26 letters of alphabet and 10 digits from 0 to 9.

Repetition not allowed:-

3 letters $\quad 26 \times 25 \times 24$
3 digit numbers ${ }^{10} P_{3}-{ }^{9} P_{2}$ (beginning with zero)

$$
=10.9 \cdot 8-9.8=(10-1)=9.9 .8
$$

$\therefore \quad$ Number of plates $=26 \times 25 \times 24 \times 9 \times 9 \times 8$

$$
=10108800 .
$$

Repetition allowed:-

3 letters $26 \times 26 \times 26$
3 digit numbers $=9 \times 10 \times 10=900$
$1^{\text {st }}$ place can't be filled by $0,2^{\text {nd }}$ can be filled by 10 and so is $3^{\text {rd }}$ as repetition is allowed.
$\therefore \quad$ Number of plates $=26 \times 26 \times 26 \times 900$

$$
=158184400 .
$$

