

Complex Number

Day - 1

Complex Numbers

A complex numbers may be defined as an ordered pair of real numbers and may be denoted by the symbol (x, y). If we write z = (x, y), then x is called the real part and y the imaginary part of the complex number z and may be denoted by Re(z) and Im(z) respectively.

It is clear from the definition that two complex numbers (x, y) and (x', y') are equal if and only if x = x' and y = y'. We shall denote the set of all complex numbers by the letter C.

Sum of two complex numbers

The sum of two complex numbers (x, y) and (x', y') is defined by the equality

$$(x, y) + (x', y') = (x + x', y + y')$$

Product of two complex numbers

The product is defined by the equality

$$(x, y) (x', y') = (xx' - yy', xy' + yx')$$

The symbol i(iota):

- \triangleright i is the square root of the real number 1.
- \triangleright It is customary to denote the complex number (0, 1) by the symbol i.

With this notation

$$i^2 = (0, 1) (0, 1)$$

= $(0.0 - 1.1, 0.1 + 1.0) = (-1, 0)$

So that i may be regarded as the square root of the real number -1.

Using the symbol I, we may writ the complex number (x, y) as x + iy. For, we have

$$x + iy = (x, 0) + (0, 1) (y, 0)$$

= (x, 0) + (0. Y - 1.0, 0.0 + 1.y)
= (x, 0) + (0, y) = (x + 0, 0 + y) = (x, y).

Remark:-

$$i = \sqrt{-1} \text{ and } i^2 = -1, \text{ we have}$$

$$\left(\sqrt{-1}\right)^2 = \sqrt{-1}.\sqrt{-1} = -1$$
 ... (i)

Again since

$$(\sqrt{a}.\sqrt{-1})^2 = [\sqrt{a}.\sqrt{-1}] \times [\sqrt{a}.\sqrt{-1}]$$
$$= (\sqrt{a})^2.[\sqrt{-1}]^2 = a(-1) = -a \qquad \dots (ii)$$

Hence $\sqrt{-a}$ means the product of \sqrt{a} and $\sqrt{-1}$. Thus a pure imaginary numbers can be expressed as the product of $\sqrt{-1}$ and a real numbers. Students must note carefully the results (i) and (ii). Keeping these results in view following computation is correct.

$$\sqrt{-a} \cdot \sqrt{-b} = \sqrt{a} \cdot \sqrt{-1} \cdot \sqrt{b} \cdot \sqrt{-1}$$
$$= \sqrt{a} \cdot \sqrt{b} \left(\sqrt{-1}\right)^2 = -\sqrt{ab}$$

But the computation

$$\sqrt{-a} \cdot \sqrt{-b} = \sqrt{(-a)(-b)} = \sqrt{ab}$$
 is wrong.

Difference of two complex numbers

The difference of two complex numbers z = (x, y) and z' = (x', y') is defined by the equality

$$z-z' = z + (-z') = (x, y) + (-x', -y')$$

= $(x + (-x'), y + (-y')) = (x - x', y - y')$

Division of two complex numbers

It is defined by the equality

$$z/z' = z(z')^{-1}, \text{ provided}$$

$$z' \neq (0,0)$$
we have $\frac{z}{z'} = (x,y)(x',y')^{-1}$

$$(x,y)\left(\frac{x'}{x^2+y^2}, -\frac{y'}{x^2+y^2}\right)$$

$$= \left(\frac{xx'}{x^2+y^2} + \frac{yy'}{x^2+y^2}, -\frac{xy'}{x^2+y^2} + \frac{yx'}{x^2+y^2}\right)$$

$$= \left(\frac{xx'+yy'}{x^2+y^2}, \frac{yx'-xy'}{x^2+y^2}\right)$$
provided $x'^2 + y'^2 \neq 0$

Modulus and argument of a complex number

Let z = x + iy be any complex number.

If $x = r \cos \theta$, $y = r \sin \theta$, then $r = +\sqrt{x^2 + y^2}$ is called the modulus of the complex numbers z written as |z| and $\theta = \tan^{-1}(y/x)$ is called the argument or amplitude of z written as arg. z.

It follows that |z| = 0 if and only if x = 0 and y = 0.

Geometrically, |z| is the distance of the point z from the origin.

It can be easily proved that

$$|z|^2 = |z^2|$$

Re $z \le |z|$ and $Im(z) \le |z|$

Also argument of a complex number is not unique, since if θ be a value of the argument, so also is $2n\pi + \theta$, where $n = 0, \pm 1, \pm 2, \dots$

The value of argument which satisfies the inequality

$$-\pi \le \theta \le \pi$$

is called the principal value of the argument. We remark that the argument of 0 is not defined.

Remark:-

It is evident from the definition of difference and modulus that $|z_1 - z_2|$ is the distance between the points z_1 and z_2 . It follows that for fixed complex number z_0 and real number r, the equation $|z - z_0| = r$ represents a circle with centre z_0 and radius r.

Polar form of a Complex Number

If r is the modulus and θ the argument of a complex numbers z, then $z = r(\cos \theta + i \sin \theta)$ is the polar form or trigonometrical form of z.

Since $e^{i\theta} = \cos \theta + i \sin \theta$, we can write $z = re^{i\theta}$. This is known as the exponential form of z.

$$\therefore x + iy = z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

$$\therefore \tan \theta = \frac{y}{x} = \frac{lm z}{Re z}, \cos \theta = \frac{Re z}{|z|}, \sin \theta = \frac{lm z}{|z|}$$

A complex numbers whose modulus is unity, i.e.

 $r = can be written as z = e^{i\theta}$.

The geometrical representation of complex numbers

We represent the complex numbers z = x + iy by a point P whose Cartesian co-ordinates are (x, y) referred to rectangular axes OX and OY, usually called real and imaginary axes respectively. Clearly the polar co-ordinates of P are (r, θ) where r is the modulus and θ the argument of complex number z. The plane whose points are represented by complex numbers is called **Argand plane** or **Argand diagram.** It is also called Complex plane or Gaussian plane.

Note:-

The complex number z is known as the affix of the point (x, y) which represents it.

Vector representation of complex numbers

If P is the point (x, y) on the argand plane corresponding to the complex number z = x + iy referred to OX and OY as co-ordinate axes, the modulus and argument of z are represented by the magnitude and direction of the vector \overrightarrow{OP} respectively and vice-versa.

The points on the argand plane representing the sum, and difference of two complex numbers.

Sum:- Let the complex numbers z_1 and z_2 be represented by the points P and Q on the argand plane.

Complete the parallelogram OPRQ. Then the mid-points of PQ and OR Are the same. But mid-point of PQ is

So that the co-ordinates of R are $(x_1 + x_2, y_1 + y_2)$. Thus the point R corresponds to the sum of the complex numbers z_1 and z_2 . In vector notation we have

$$z_1 + z_2 = \overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PR} = \overrightarrow{OR}$$
 ... (i)

Difference:- We first represent $-z_2$ by Q' so that QQ' is bisected at O. Complete the parallelogram OPRQ'. Then the point R represents the complex number $z_1 - z_2$ since the mid-point of PQ' and OR are the same. As OQ is equal and parallel to RP, we see that ORPQ is a parallelogram, so that $\overrightarrow{OR} = \overrightarrow{OP}$.

Thus we have in vectorial notation

$$z_1 - z_2 = \overrightarrow{OP} - \overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{QO}$$

= $\overrightarrow{OP} + \overrightarrow{PR} = \overrightarrow{OR} = \overrightarrow{QP}$... (ii)

It follows that the complex numbers $z_1 - z_2$ is represented by vector \overrightarrow{QP} , where the points P and Q represent the complex numbers z_1 and z_2 respectively.

Conjugate to complex numbers

If z = x + iy, then the complex numbers x - iy is called the conjugate of the complex number z and is written as \bar{z} . It is easily seen that numbers conjugate to $z_1 + z_2$ and $z_1 z_2$ are $\bar{z_1} + \bar{z_2}$ and $\bar{z_1}\bar{z_2}$ respectively.

Also we have,

$$|z|^2 = z\overline{z}$$
, $2x = 2Re(z) = z + \overline{z}$
 $2iy = 2iIm(z) = z - \overline{z}$.

It is clear that $|\overline{z}| = |z|$, $(\overline{z}) = z$. Geometrically, the conjugate of z is the reflection (or image) of z in the real axis. If (r, θ) are polar co-ordinates of P, then the polar co-ordinates of its reflection P' are $(r, -\theta)$ so that we have amp $z = -\text{amp } \overline{z}$.

Conjugate of $a + be^{i\theta}$:

Conjugate of $a + be^{i\theta}$ is not $a - be^{i\theta}$ but $a + be^{-i\theta}$ as shown below

$$a + be^{i\theta} = a + b(\cos\theta + i\sin\theta)$$
$$= (a + b\cos\theta) + ib\sin\theta$$

Its conjugate is $(a + b \cos \theta) - ib \sin \theta$

$$= a + b(\cos\theta - i\sin\theta) = a + be^{-i\theta}$$

Note:-

$$\bar{t} = -i, \bar{t} \ \bar{z} = -i \bar{z}.$$

Illustration

If
$$x + iy = \sqrt{\left(\frac{a+ib}{c+ib}\right)}$$
, prove that $(x^2 + y^2)^2 = \frac{a^2+b^2}{c^2+d^2}$.

Illustration

(a):
$$-\operatorname{If} x = -5 + 2\sqrt{-4}$$
, find the value of $x^4 + 9x^3 + 35x^2 - x + 4$.

(c):
$$-\operatorname{If} x = \frac{-5 + i\sqrt{3}}{2}$$
, prove that $(x^2 + 5x)^2 + x(x + 5) = 42$

Kaysons Education

Complex Number

Illustration

If z = z + iy and $z^{1/3} = a - ib$, then show that $\frac{x}{a} - \frac{y}{b} = 4(a^2 - b^2)$.

The following relations be committed to memory

$$i^{4} = 1, i^{4n} = 1, i^{4n+1} = i$$

$$i^{4n+2} = i^{2} = -1, i^{4n+3} = i^{3} = -i$$

$$(1+i)^{2} = 1+i^{2}+2i=2i$$

$$(1-i)^{2} = \text{conj.} = -2i, 1+i^{2} = 0, 1-i^{2} = 2$$

$$\frac{1+i}{1-i} = \frac{(1+i)^{2}}{1-i^{2}} = \frac{2i}{2} = i \quad \therefore \frac{1-i}{1+i} = \frac{1}{i} = -i.$$

Illustration

Simplify the following:

(a):
$$\frac{3-i}{2+i} + \frac{3+i}{2-i}$$
 (b): $\frac{3}{1+i} - \frac{2}{2-i} + \frac{2}{1-i}$

Solution

(a):
$$-\frac{(3-i)(2-i)+(3+i)(2+i)}{4+1}$$

$$= \frac{1}{5} [(6-5i+i^2)+(6+5i+i^2)] = \frac{10}{5} = 2.$$
(b):
$$-\frac{3(1-i)}{2} -\frac{2(2+i)}{4+1} + \frac{2(1+i)}{2}$$

$$= \frac{1}{10} [15(1-i) - 4(2+i) + 10(1+i)] = \frac{1}{10} (17-9i).$$

Illustration

The real part of (1 + i)2/(3 - i) is

$$(a) -1/5$$

(b)
$$1/3$$

$$(c) -1/3$$

(d) none of these.

Solution

$$\frac{(1+i)^2}{3-i} = \frac{1+i^2+2i}{3-i} = \frac{2i(3+i)}{3^2-i^2} = \frac{6i-2}{10}$$

$$\therefore \qquad Re\left(\frac{(1+i)^2}{3-i}\right) = -\frac{2}{10} = -\frac{1}{5}.$$

Illustration

$$\left(\frac{2i}{1+i}\right)^2$$
(a) I

(b) 2i

(c) 1 - I

(d) 1 - 2i

Solution

The correct option is b.

$$\frac{4i}{2i} = 2i$$