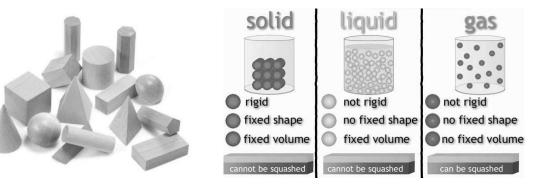


Chapter


7

Solid State

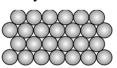
Day - 1

PROPERTIES OF SOLIDS

- 1. Solids have definite mass.
- 2. Solids have definite Volume
- 3. Solids have definite shape

PROPERTIES OF SOLIDS

- 1. Intermolecular distances are short.
- 2. Intermolecular forces are strong.
- 3. Their constituent particles (atoms, molecules or ions) have fixed positions and can only oscillate about their mean positions.
- 4. In general they are incompressible and rigid

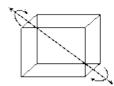

Property	Crystal	Amorphous solid	
Shape	Definite 3D geometrical shape	Random or Irregular shape	
M.P.	Melts at a sharp and	Gradually soften over a	
	characteristic temperature	range of temperature	
Properties	Anisotropic; their physical	Isotropic; their physical	
	properties show different values	properties are the same in all	
	when measured along different	directions.	
	directions in the same crystal.		
Heat of fusion	Definite and Characteristic	Heat of fusion in a range	
Cleavage plains	Are present. ; When cut with a	Are not present. When cut	
	sharp edged tool, they split into	with a sharp edged tool, they	
	two pieces and the newly	cut into two pieces with	
	generated surfaces are plain and	irregular surfaces.	

Solids are classified as crystalline and amorphous

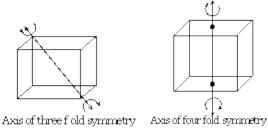
	smooth.		
Type of solid	True solid	pseudo solid or super cooled liquid	
Order and	Long range order	short range order	
Symmetry	1.Axis of symmetry	No symmetry	
	2.Plain of symmetry		
	3.centre of symmetry		
Examples	Diamond, Graphite, NaCl, Metal	Glass, rubber, plastics,	
	(Fe, Cu, Ag etc) ice.	Quartz glass	

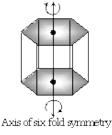
crystalline

amorphous

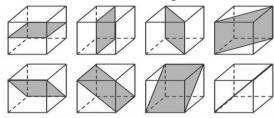


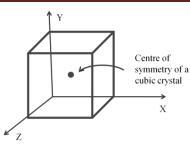
888888


AXIS OF SYMMETRY


- An imaginary axis through which if we rotate the solid then same figure is seen more than once before completing 3600
- For a cube we have
- Two fold symmetry
- Three fold symmetry
- four fold symmetry

Axis of symmetry

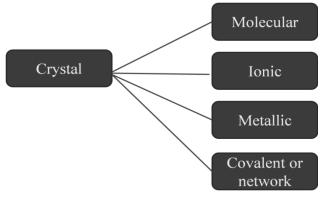

Axis of two fold symmetry


PLANE OF SYMMETRY

An imaginary plane through if we cut the solid the two parts will be mirror image of each other

Centre of symmetry

• An imaginary point through if we pass an imaginary line it will touch the opposite plane, edge or vertices at equal distance


PROPERTIES OF SOLIDS

1. **Cleavage plains:** *Cleavage* is the tendency of a mineral to break along smooth *planes* parallel to zones of weak bonding. Crystals have cleavage plains where as amorphous solids do not have these plains

2. Crystals are called true solids whereas amorphous solids are called pseudo solids or super cooled liquid.

Polymorphic forms or polymorphs: The different crystalline forms of a same substance are known as polymorphic forms or polymorphs. For example: graphite and diamond are polymorph's of carbon

Crystals classification based on the nature of intermolecular forces

Molecular crystals

They have constituent particles as molecules and are divided into three parts

1. Non polar: here the intermolecular forces are weak Vanderwaal's forces (Dispersion or London forces). They are soft, do not conduct electricity and have very low melting point. Ex: Argon, CCl_4

2. Polar: here the intermolecular forces are Dipole-dipole interactions. They are soft, do not conduct electricity and have low melting point. Ex: HCl, SO_2

3. Hydrogen bonding: here the intermolecular forces are Hydrogen bonds. They are hard, do not conduct electricity and have low melting point. Ex: $Ice(H_2O)$

4. Ionic crystals: The constituent particles are ions. These have strong columbic intermolecular forces. They are hard but brittle. They do not conduct electricity in solid state but are good conductors on molten and aqueous state. They have very high melting point. Ex: Rock salt (NaCl), MgCl₂

5. Metallic solid: The constituent particles are positive ions floating in sea delocalized electrons. These have strong metallic intermolecular forces. They are hard but ductile and malleable. They are good conductor of electricity. They have high melting point. Ex: Iron, Copper etc

6. Covalent or network solids: The constituent particles are atoms. These have strong covalent bonding. They are hard .They do not conduct electricity. They have very high melting point. Ex: Silica, Diamond etc. Graphite is an exception because it is soft and conducts electricity.

Type of solid	Particles	Attractive Forces	Examples	Nature	Electrical Conductivity	Melting Point
(1) Molecular(i) Non-polarii) Polar(iii) H. bonding	Molecules	Disp. or London forces Dipole-dipole interactions Hydrogen bonding	Ar, CCl ₄ , HCl, SO ₂ H ₂ O (ice)	Soft Soft Hard	Insulator Insulator Insulator	Very low Low Low
(2) Ionic solids	Ions	Columbic	NaCl, MgO, ZnS, CaF ₂	Hard but brittle	insulators: conductors in molten state and aqueous solutions	High
(3) Metallic solids	positive ions in a sea of delocalised electrons	Metallic bonding	Fe, Cu, Ag, Mg	Hard but malleable and ductile	Conductors	Fairly high
(4) Covalent or network solids	Atoms	Covalent bonding	SiO ₂ (quartz) SiC. C (diamond) C (graphite)	Hard soft	insulator conductor	Fairly high