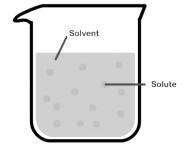

| Chapter<br>6 |                  |  |  |  |
|--------------|------------------|--|--|--|
|              | Dilute solutions |  |  |  |
|              |                  |  |  |  |
| Day - 1      |                  |  |  |  |

#### **SOLUTIONS**

When two or more than two substances are mixed with each other but do not react with each other it is called a solution.

#### Solutions are of two types

Homogeneous Solutions are mixtures of two or more than two components whose composition and properties are uniform throughout the mixture. Heterogeneous mixture don't have uniform composition and properties




## **BINARY SOLUTIONS**

Binary solution is a solution which contains only two components which are called solute and solvent

Solvent: The component whose mole fraction is greater than other

Solute: The component whose mole fraction is smaller than solvent





#### TYPES OF BINARY SOLUTIONS

| Type of solution  | Solute | Solvent | Common examples                      |
|-------------------|--------|---------|--------------------------------------|
| Gaseous solutions | Gas    | Gas     | Mixture of oxygen and nitrogen gases |
|                   | Liquid | Gas     | Chloroform mixed with nitrogen gas   |
|                   | Solid  | Gas     | Camphor in nitrogen gas              |
| Liquid Solutions  | Gas    | Liquid  | Oxygen dissolved in water            |
|                   | Liquid | Liquid  | Ethanol dissolved in water           |
|                   | Solid  | Liquid  | Glucose dissolved in water           |
| Solid Solutions   | Gas    | Solid   | Solution of hydrogen in palladium    |
|                   | Liquid | Solid   | Amalgam of mercury with sodium       |
|                   | Solid  | Solid   | Copper dissolved in gold             |

#### CONCENTRATION OF BINARY SOLUTIONS

If we take a binary solution consisting of A & B.

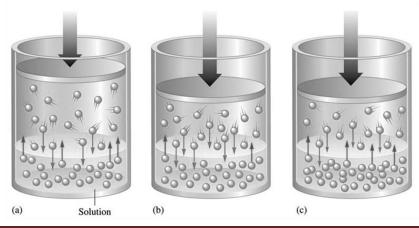
1. Mass percentage : 
$$\frac{W_A}{W_A + W_B} \times 100 = \frac{W_A}{W_{Solution}} \times 100$$

2. Volume percentage : 
$$\frac{V_A}{V_A + V_B} x \ 100 = \frac{V_A}{V_{Solution}} x \ 100$$

3. Mass/volume percentage = 
$$\frac{W_A}{W_{Solution}} x 100$$

4. Parts per million (ppm) = 
$$\frac{W_A}{W_{Solution}} \times 10^6$$

#### **Solution**


5. Mole fraction: moles of A in one mole of solution 
$$X_A = \frac{n_A}{n_A + n_B} = \frac{W_A/M_A}{W_A/M_A + W_B/M_B}$$

6. Molality: mole of A in one kg of B 
$$m^1 = \frac{n_A}{\text{kg of solution}} = \frac{W_A/M_A}{W_B/1000}$$

7. Molarity: moles of A in one litre of solution (A + B) 
$$M = \frac{n_A}{\text{Lipe of solution}} = \frac{W_A/M_A}{V_{\text{Solution}}(m \, \text{litre})}$$

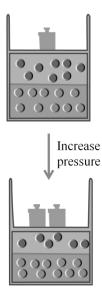
8. Normality: gm eqn. of A per lite of solution 
$$M = \frac{gm Eq}{lit of solution} = \frac{W_A/E_A}{V_{solution}}$$

# SOLUTION OF GASES IN LIQUIDS





### **HENRY'S LAW**


The mole fraction of volatile solute is proportional to the vapor pressure of the solute.

 $P = K_H X$ 

 $K_H$ = Henry's Law constant, X = mole fractions.

Increasing the partial pressure of a gas over a liquid increases the amount of gas dissolved in the liquid

K<sub>H</sub> depends on temperature



#### Henry's law finds several applications in industry

To increase the solubility of CO<sub>2</sub> in soft drinks and soda water, the bottle is sealed under high pressure

Bends: Scuba divers while breathing air at high pressure underwater increases the solubility of atmospheric gases in blood. When the divers come towards surface, the pressure gradually decreases. This releases the dissolved gases and leads to the formation of bubbles of nitrogen in the blood. This blocks capillaries and creates a medical condition known as bends, which are painful and dangerous to life

**Anoxia:** at high altitudes due to low pressure the solubility of oxygen in blood decreases.