

Chapter 5 Gases and liquids

Day - 1

STATES OF MATTER

There are five known phases, or **states, of matter**: solids, liquids, gases, and plasma and Bose-Einstein condensates.

Here we will study only three. Solid, Liquid and Gas

GASEOUS STATE

Only eleven elements exist as gases under normal conditions

GASEOUS STATE

- The gaseous state is characterized by the following physical properties.
- Gases are highly compressible.
- Gases exert pressure equally in all directions.
- Gases have much lower density than the solids and liquids.
- The volume and the shape of gases are not fixed. These assume volume and shape of the container.
- Gases mix evenly and completely in all proportions without any mechanical aid (Diffusion)

Gas Laws

1. Boyle's Law: At constant temperature

 $P \propto \frac{1}{v}$ PV = constant $P_1V_1 = P_2V_2 = P_3V_3 = \dots = \text{constant}$

2. Charles Law: At constant pressure

 $V \propto T$ or $\frac{V}{T} = \text{constant} = K$

Here K is a constant that depends on the pressure of gas, the amount of gas and also unit of volume if V_1 and T_1 are the initial values of volume and temperature of a gas then,

$$\frac{V_1}{T_1} = K$$

Also, if the temperature is now changed to T_2 such that the volume change to V_2 We can write,

We can write, $\frac{V_2}{T_2} = K$ Or $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ or $V_1T_2 = V_2T_1$

Volume Vs Temperature graph (c)

3. Avogadro's Law: At constant pressure and temperature $V \propto n$ (no. of moles)

4. Ideal gas equation Ideal gas equation

 $V \propto \frac{1}{p}$ $V \propto T$ $V \propto n$ $V \propto \frac{nT}{p}$ $V = \frac{nRT}{p}$ $P = \frac{n}{V}RT = \rho RT$ $P = \frac{W}{V}RT$

R = gas constantw = mass of gas $\rho = density$ M = Mol weight of gas R = gas constant

5. Modified gas equation

$\frac{\mathbf{P}_1\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2\mathbf{V}_2}{\mathbf{T}_2}$	If moles are constant
$P_1 V_1 = P_2 V_2$	If n & T, are constant
$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	If n & V, are constant
$\frac{\overline{V_1}}{\overline{T_1}} = \frac{\overline{V_2}}{\overline{T_2}}$	If n & P, are constant

Gas Constant 'R'

 $R = \frac{PV}{nT}$ = 0.0821 lit atm/ K. mole = 8.314x 10⁷ erg/k. mole = 1.987 cal/k. mole

Units and conversion

			SI	cgs	Common		
		V	m ³	cm ³	Liter		
		р	N/m ²	Dy/cm ²	Atm. and mm Hg		
		Т	K	K	°C		
		n	moles	moles	moles		
Conversion							
Volume	\Rightarrow	$\Rightarrow \qquad 1 \text{m}^3 = 10^6 \text{ cm}^3 = 10^3 \text{ lit}$					
Pressure	\Rightarrow	\Rightarrow 1 atm = 760 mm Hg = 101.3kPa					
		$= 1.013 \text{ x } 10^5 \text{ Pa} = 14.7 \text{ Psi}$					
		1 bar = $10^5 \text{ Pa} = 10^6 \text{ dy/cm}^2 = 750 \text{ torr}$					
Temperature	\Rightarrow	K	= °	C + 273.15			