

STATES OF MATTER

There are five known phases, or states, of matter: solids, liquids, gases, and plasma and BoseEinstein condensates.
Here we will study only three. Solid, Liquid and Gas

States of Matter

Subliming

	Properties	Solids	Liquids	Gases
1	Mass	Definite	Definite	Definite
2	Shape	Definite	Acquires the shape Of the container	Acquires the shape of the container
3	Volume	Definite	Definite	Indefinite
4	Compressibility	Not possible	Almost Negligible	Highly Compressible
5	Fluidity	Not possible	Can flow	Can flow
6	Rigidity	Highly rigid	Less rigid	Not rigid
7	Diffusion	Slow	Fast	Very fast
8	Space between particles	Most closely packed	Less closely packed	Least closely packed
9	Inter-particle force	strongest	Slightly weaker than in solids	Negligible

GASEOUS STATE

Only eleven elements exist as gases under normal conditions

GASEOUS STATE

The gaseous state is characterized by the following physical properties.

- Gases are highly compressible.
- Gases exert pressure equally in all directions.
- Gases have much lower density than the solids and liquids.
- The volume and the shape of gases are not fixed. These assume volume and shape of the container.
- Gases mix evenly and completely in all proportions without any mechanical aid (Diffusion)

Gas Laws

1. Boyle's Law: At constant temperature
$\mathrm{P} \propto \frac{1}{\mathrm{~V}}$
$\mathrm{PV}=$ constant
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{P}_{3} \mathrm{~V}_{3}=\cdots=$ constant

2. Charles Law: At constant pressure
$\mathrm{V} \propto \mathrm{T}$ or $\frac{\mathrm{V}}{\mathrm{T}}=$ constant $=\mathrm{K}$
Here K is a constant that depends on the pressure of gas, the amount of gas and also unit of volume if V_{1} and T_{1} are the initial values of volume and temperature of a gas then,
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\mathrm{K}$
Also, if the temperature is now changed to T_{2} such that the volume change to V_{2}
We can write,
We can write, $\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}=\mathrm{K}$ Or $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$ or $\mathrm{V}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1}$

Volume Vs Temperature graph (c)
3. Avogadro's Law: At constant pressure and temperature V $\propto \mathbf{n}$ (no. of moles)

4. Ideal gas equation

Ideal gas equation
$\left.\mathrm{V} \propto \frac{1}{\mathrm{p}}\right\}$
$V \propto T\}$
$V \propto n$
$V \propto \frac{\mathrm{nT}}{\mathrm{p}}$
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{p}}$
$\mathrm{P}=\frac{\mathrm{n}}{\mathrm{v}} \mathrm{RT}=\rho \mathrm{RT}$
$\mathrm{R}=$ gas constant
$\mathrm{P}=\frac{\frac{\mathrm{w}}{\mathrm{M}}}{\mathrm{V}} \mathrm{RT}$
$\mathrm{w}=$ mass of gas $\rho=$ density
$M=M o l$ weight of gas $R=$ gas constant

5. Modified gas equation

$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
If moles are constant
$P_{1} V_{1}=P_{2} V_{2}$
If $\mathrm{n} \& \mathrm{~T}$, are constant
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
If $n \& V$, are constant
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
If $n \& P$, are constant

Gas Constant ' R '

$\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}}$
$=0.0821$ lit atm $/ \mathrm{K}$. mole
$=8.314 \times 10^{7} \mathrm{erg} / \mathrm{k}$. mole
$=8.314 \mathrm{~J} / \mathrm{k}$. mole
$=1.987 \mathrm{cal} / \mathrm{k}$. mole

Units and conversion

	SI	cgs	Common
V	m^{3}	$\mathrm{~cm}^{3}$	Liter
p	$\mathrm{N} / \mathrm{m}^{2}$	Dy/cm	Atm. and mm Hg
T	K	K	${ }^{\circ} \mathrm{C}$
n	moles	moles	moles

Conversion
Volume $\quad \Rightarrow \quad 1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{3}=10^{3}$ lit
Pressure $\quad \Rightarrow \quad 1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=101.3 \mathrm{kPa}$
$\begin{aligned} & =1.013 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{Psi} \\ 1 \text { bar } & =10^{5} \mathrm{~Pa}=10^{6} \mathrm{dy} / \mathrm{cm}^{2}=750 \text { torr }\end{aligned}$
Temperature $\quad \Rightarrow \quad \mathrm{K} \quad={ }^{\circ} \mathrm{C}+273.15$

