

Chapter

Atomic Structure

Day - 1

INTRODUCTION

The word .atom has been derived from the Greek word *atomio* which means .un-cutable or non-divisible.

DALTON'S ATOMIC THEORY

The matter is composed of small indivisible particles called atoms (from Greek word atomio, meaning indivisible). In 1808 Dalton proposed the following theory

- 1. Matter consists of atoms, which cannot be divided further.
- 2. All the atoms of a given element have identical mass. Atoms of different elements differ in mass.
- 3. Atoms combine in a fixed ratio to form Compounds.
- 4 The atoms cannot be created or destroyed.

SUCCESS OF DALTON'S ATOMIC THEORY

- 1. Atoms are the smallest part of matter
- 2. Atoms cannot be created of destroyed
- 3. Atoms of same element are similar in mass
- 4. Atoms combine with each other in simple ratios.

FAILURES OF DALTON'S ATOMIC THEORY

It could explain lows of chemical combination, as on today we know that all four points are not correct.

CATHODE RAYS

CATHODE RAYS ARE NEGATIVELY CHARGED

CATHODE RAYS TRAVEL IN STRAIGHT LINE.

CATHODE RAYS ARE PARTICLES

CHARGE /MASS (E/M) RATIO

In 1897 JJ. Thomson determined the e/m value of cathode rays.

Thomson proved that e/m ratio is same, whatever material is of plates or gas filled in the tube

$$\frac{e}{m} = 1.7588 \times 10^{11} \text{C kg}^{-1}$$

Page 19

Ex.: Which of the following is never true for cathode rays?

- (a) They possess kinetic energy
- (b) They are electromagnetic waves
- (c) They produce heat
- (d) They produce mechanical pressure

MILLIKAN'S OIL DROP EXPERIMENT

MASS OF ELECTRON

From Millikan's oil drop experiment $e = 1.6022 \times 10^{-19}$ coulombs

$$m = \frac{e}{e/M} = \frac{1.6022 \times 10^{-19}}{1.7588 \times 10^{11}} = 9.1096 \times 10^{-31} \text{kg}$$

1amu = $\frac{1}{N_A} = 1.66 \times 10^{-24} \text{gm} = 1.66 \times 10^{-27} \text{kg}$
mass of $e^- = \frac{9.1096 \times 10^{-31}}{1.66 \times 10^{-27}} = 0.000549 \text{amu}$

ANODE RAYS

Answer (c)

4. Negative charge	Positive charge
5. Mass constants	Mass depends upon gas

The smallest and lightest positive ion was obtained from hydrogen and was called **proton. This** characterized in 1919.

Later the presence of electrically neutral particle was found in the atom. These particles were discovered by Chadwick (1932) by bombarding a thin sheet of beryllium by α -particles, then electrically neutral particles having a mass slightly greater than that of the protons was emitted. He named these particles as **neutrons**.

Name	Symbol	Absolute charge/C	Relative charge	Mass/ kg	Mass/u
Electron	e	-1.6022×10^{-19}	-1	9.10939x10 ⁻³¹	0.00054
Proton	р	$+1.6022 \text{x} 10^{-19}$	+1	1.67262×10^{-27}	1.00727
Neutron	n	0	0	1.67493x10 ⁻²⁷	1.00867

Thomson Model of Atom

Plum pudding model OR Water melon model

FUN FACTS JJ THOMSON (NOBEL PRIZE IN 1906)

Student of JJ Thomson who received the Nobel prize					
	Research Supervisor	Nobel Prize	Research recognised by the Nobel Committee		
Ernest Rutherford	JJ Thomson	1908	Investigations into the disintegration of the elements, and the chemistry of radioactive substances		
Francis William Aston	JJ Thomson	1922	Mass spectrograph, isotopes enunciation of the whole-number rule		
Charles Thomson Rees Wilson	JJ Thomson	1927	Cloud chamber, made the paths of electrically charged particles visible by condensation of vapour		
Lawrence Bragg	JJ Thomson	1915	X Ray Crystallography		
Charles Glover Barkla	JJ Thomson	1917	Characteristic Rontgen radiation of the elements		
Sir Owen Williams Richardson	JJ Thomson	1928	Discovery of the Richardson law which explants thermionic phenomenon		
Edward Victor Appleton	JJ Thomson	1947	Discovery of the so-called Appleton–Barnett layer layer in upper atmosphere		